
Bachelor Thesis

Machine-Learning based
Hypergraph Pruning

for Partitioning
Tobias Fuchs

Abgabedatum: 31.07.2020

Supervisors: Prof. Dr. Peter Sanders
M.Sc. Tobias Heuer
Dr. Christian Schulz, Privatdoz.1
M.Sc. Daniel Seemaier

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

1Research Group Theory and Applications of Algorithms, Department of Informatics, University of Vienna

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Mühlacker, den 31.07.2020

Tobias Fuchs

Abstract
Hypergraph partitioning is a useful tool for improving electrical circuit designs

and accelerating sparse matrix vector multiplications for example. A hypergraph
is a generalisation of a graph in which an edge may contain more than two nodes.
In hypergraph partitioning, vertices should be distributed to a fixed number of
blocks while maintaining a balance constraint on the size of the blocks as well
as minimising an objective function between those. Due to the NP-hardness of
hypergraph partitioning, heuristics are used to deal with otherwise intractable
problem instances. One of the most important meta-heuristics is the multi-level
paradigm. It is three-layered consisting of the coarsening, initial partitioning and
refinement phase. This work focuses mainly on the coarsening phase since the
selection of a proper rating function is still an interesting avenue of research.
We propose a machine-learning based approach that uses a logistic regression

model to estimate the likelihood of two adjacent hypernodes to end up in the same
block of a partition. Sample data consists of feature vectors that are computed
using global statistics on the hypergraph as well as local information on the ad-
jacent hypernodes considered. Thereby, coarsening rating functions used in other
well-established partitioners are also used as feature values. The prediction of the
trained model is between 97% and 99% accurate if the prediction is that a pair of
particular hypernodes belong to the same block. Additionally, we predict between
70% and 73% of all considered hypernode pairs to belong to the same block of a
partition.
The trained model has been embedded into a coarsening algorithm. After this

algorithm is applied, we use KaHyPar-CA to calculate a partition on the coarse
hypergraph followed by refinement to the original instance. Our coarsening algo-
rithm contracts on average about 24% of all pins among all different hypergraph
classes. Although, the prediction making consumes more time than calculating
only a single rating function in coarsening and the final partitions are on average
slightly worse than the results of a state-of-the-art partitioner (KaHyPar-CA).
However, the trained model’s weights reveal interesting insights about the rating
function’s importances.

Zusammenfassung
Hypergraph-Partitionierung ist ein nützliches Werkzeug zur Modellierung von

Problemen verschiedener Domänen. Das Verbessern von elektrischen Schaltplä-
nen, sowie die Beschleunigung der Multiplikation von dünnbesetzten Matrizen mit
Vektoren, sind mögliche Anwendungen. Ein Hypergraph ist eine Verallgemeine-
rung eines Graphen in dem eine Kante mehr als zwei Knoten enthalten kann.
Bei der Hypergraph-Partitionierung wird angestrebt Hyperknoten auf eine feste
Anzahl von Blöcken zu verteilen, sodass die Größen der Blöcke möglichst gleich
sind. Gleichzeitig soll eine Zielfunktion über den Hyperkanten, die Hyperknoten
mehrerer Blöcke beinhalten, minimiert werden. Da Hypergraph-Partitionierung
ein NP-schweres Problem ist, werden Heuristiken verwendet um mit ansonsten
unlösbaren Probleminstanzen umzugehen. Eine der wichtigsten Meta-Heuristiken
ist das Multilevel-Paradigma. Es besteht aus drei Schritten: der Vergröberungs-,
der Partitionierungs- und der Verfeinerungsphase. Diese Arbeit konzentriert sich
hauptsächlich auf die Vergröberungsphase, da die Auswahl einer geeigneten Be-
wertungsfunktion in dieser immer noch ein interessanter Forschungsweg ist.
In dieser Arbeit wird ein auf maschinellem Lernen basierender Ansatz vorge-

stellt, der eine logistische Regression verwendet, um die Wahrscheinlichkeit abzu-
schätzen, dass zwei benachbarte Hyperknoten im gleichen Block einer Partition
landen. Die Eingabedaten bestehen dabei aus Merkmalsvektoren, die unter Ver-
wendung globaler Statistiken über den Hypergraphen sowie lokaler Informationen
über die betrachteten, benachbarten Hyperknoten berechnet werden. Dabei werden
auch Bewertungsfunktionen, die in anderen, etablierten Partitionierern verwendet
werden, als Merkmalswerte verwendet. Die Vorhersage des trainierten Modells ist
zwischen 97% und 99% genau, wenn vorhergesagt wird, dass zwei benachbarte Hy-
perknoten zum selben Block gehören. Außerdem werden zwischen 70% und 73%
aller betrachteten Hyperknotenpaare mit dieser Vorhersage belegt.
Das trainierte Modell wurde in einen Vergröberungsalgorithmus eingebettet.

Nach dessen Anwendung wird der Partitionierer KaHyPar-CA verwendet, um
eine Partition auf dem reduzierten Hypergraphen zu berechnen, gefolgt von einer
Verfeinerung zur ursprünglichen Instanz. Der vorgestellte Vergröberungsalgorith-
mus kontrahiert durchschnittlich etwa 24% aller Pins über alle verschiedenen Hy-
pergraphenklassen hinweg. Obwohl die Berechnung der Vorhersage mehr Zeit in
Anspruch nimmt, sind die berechneten Partitionen im Durchschnitt etwas schlech-
ter als die eines modernen Partitionierers (KaHyPar-CA). Die Gewichte des trai-
nierten Modells offenbaren jedoch interessante Erkenntnisse über die Wichtigkeit
verschiedener Bewertungsfunktionen in der Vergröberungsphase.

Danksagungen
In erster Linie möchte ich mich natürlich bei meinen Betreuern Christian, Daniel und Tobias
bedanken, die mich stets mit guten Ideen und Ratschlägen bei meiner Arbeit unterstützten.
Außerdem gehört mein Dank meinen Freunden und meiner Familie, die stets an meiner Seite
standen, auch wenn ich mal nur weniger Zeit mit ihnen verbringen konnte.

Contents

Contents

1. Introduction 9
1.1. Motivation . 9
1.2. Contribution . 9
1.3. Structure of Thesis . 10

2. Preliminaries 11
2.1. Hypergraphs . 11

2.1.1. General Definitions . 11
2.1.2. Partitions and Partitioning Problem 11

2.2. Machine-Learning . 12
2.2.1. Logistic Regression . 12
2.2.2. Principal Component Analysis (PCA) 13

3. Related Work 15
3.1. Multi-level Hypergraph Partitioning . 15

3.1.1. Coarsening Phase . 15
3.1.2. Refinement Phase . 18

3.2. Learning Heuristics for Search-Space Pruning 19
3.2.1. Search-Space Pruning for Clique Detection 19
3.2.2. Learning Objective Boundaries for Constraint Optimisation Problems . 20

4. Machine-Learning based Hypergraph Pruning for Partitioning 23
4.1. Idea . 23
4.2. Feature Selection . 24

4.2.1. Global Hypergraph Features . 24
4.2.2. Hypernode Pair Features . 25

4.3. Feature Computation . 26
4.4. Model Training . 27

4.4.1. Model Architecture . 27
4.4.2. Input Normalisation . 28
4.4.3. Dimensionality Reduction using PCA 28
4.4.4. Dealing with Overfitting . 29
4.4.5. Dealing with Unbalanced Class Sizes 29
4.4.6. Train-Validation-Test Split . 30
4.4.7. Tuning Hyperparameters . 30

4.5. Hypergraph Pruning . 31

5. Evaluation 33
5.1. Experimental Setup . 33

5.1.1. Instances . 33
5.1.2. Feature Computation . 34
5.1.3. Model Training . 35
5.1.4. Hypergraph Pruning . 36

5.2. Experimental Results . 37
5.2.1. Model Accuracies . 37

6

Contents

5.2.2. Model Analysis . 37
5.2.3. Hypergraph Pruning . 40

6. Conclusion 45
6.1. Future Work . 45

Bibliography 47

A. Appendix 53
A.1. Hypergraph Training Set . 53
A.2. Hypergraph Benchmark Set . 54
A.3. List of Features . 56
A.4. Training Set Feature Correlation . 58
A.5. Local Feature Value Distributions of Training Set 58
A.6. Principal Components . 58
A.7. Trained Model . 58
A.8. Hypergraph Pruning Solution Quality Plots 61
A.9. Hypergraph Pruning Runtime Plots . 61

7

1 Introduction

1. Introduction

1.1. Motivation
Hypergraphs are a generalisation of graphs that may have more than two nodes per edge.
They are useful for modelling for example group chats in social networks [77] or connectivity
of electrical components in circuits [40]. In hypergraph partitioning, vertices should be dis-
tributed to a fixed number of blocks while maintaining a balance constraint on the size of the
blocks as well as minimising an objective function between those. Applications of hypergraph
partitioning include modelling group chats in social networks using partitioning to overcome
scaling issues [77]. Also, improving electrical circuit designs [40], optimising transportations on
road networks [76] as well as solving SAT problems [18] and accelerating sparse matrix-vector
multiplications [74] are possible applications.
Due to the NP-hardness of hypergraph partitioning [21, 24], it is necessary to use heuristics
to keep up with growing instances from a growing set of applications. While there are new
distributed and parallel approaches for partitioning problems [36, 64], this work focuses on
the multi-level paradigm in hypergraph partitioning which is still one of the most important
heuristics in that field. It is three-layered consisting of the coarsening, initial partitioning,
and refinement phase. In the coarsening phase, the original hypergraph is approximated by
gradually smaller ones maintaining the overall structure of it. The initial partitioning phase
computes a partition on the smallest approximation of the original hypergraph. Finally, the
refinement phase projects the initial partition iteratively to the next level finer hypergraph
while refining the partition with the aid of local search algorithms in each step.
Moreover, the coarsening phase tries to build structurally similar approximations. To achieve
this, highly connected vertices are contracted because they are very likely to end up in the
same block of a partition. However, there are many different rating functions discussed in
the literature for the local connectivity of two vertices. While the connectivity of two nodes
in a simple graph is just the weight of the edge between them, the hypergraph scenario
is more difficult because a hyperedge may contain many hypernodes and, more important,
two vertices may be connected through more than one hyperedge with different size and
weight. There is lots of research on the three phases of the multi-level paradigm (e.g., in
Ref. [27, 31, 39, 42, 58, 65, 68]), however, the selection of a proper rating function in the
coarsening phase is still an interesting avenue of research.
Currently, many different rating functions are employed in different partitioners. As a con-
sequence, it is not clear which of these functions is best suited for particular hypergraph
instances. This work proposes a machine-learning approach that combines those different
rating functions and other useful metrics on the hypergraph to compute a likeliness of two
adjacent vertices to end up in the same block of a partition. Our goal is to build a coarsening
algorithm that performs well on different types of hypergraphs.

1.2. Contribution
The main contribution of this work is the hypergraph pruning algorithm that is discussed in
detail in Section 4. Part of the algorithm is a machine-learning model that has been trained
on a heterogeneous set of 100 hypergraphs using local features as well as global statistics on
the particular hypergraph instance. If the model’s prediction is that a pair of adjacent nodes

9

1 Introduction

belongs to the same block of a partition in the output, we contract these nodes reducing
the input size for the actual hypergraph partitioner. This prediction is accurate between
98% and 99% on independent test data while classifying between 70% and 73% of the input
as same block. These results are a necessity to employ the trained machine-learning model
as a coarsening step prior to the actual hypergraph partitioning. The proposed algorithm
contracts a not inconsiderable amount of vertices, i.e., we contract on average about 24% of
all pins among all different hypergraph classes. Although, the prediction making consumes
more time than calculating only a single rating function in coarsening and the final partitions
are on average slightly worse than the results of a state-of-the-art partitioner. Nevertheless, an
analysis of the trained model reveals some interesting insights on the importance of different
rating functions used in the hypergraph partitioning community for coarsening.

1.3. Structure of Thesis

The subsequent Section 2 introduces definitions and notations used throughout this thesis.
Thereby, we take a look at hypergraphs and hypergraph partitioning. Also, machine-learning
approaches used within this work are briefly introduced. Section 3 shortly summarises related
work concerning the multi-level paradigm in hypergraph partitioning as well as the usage of
machine-learning techniques for search-space pruning on other problems. The idea behind the
proposed approach as well as an explanation of the methodology used is given in Section 4.
Also, we present solutions to problems which occurred while training the model. Section 5
evaluates the presented approach containing the experimental setup as well as results yielded.
The last Section 6 briefly summarises the previous sections as a whole.

10

2 Preliminaries

2. Preliminaries
This section shortly introduces the main concepts behind hypergraphs in Section 2.1 as well
as the two machine-learning concepts used throughout this work in Section 2.2.

2.1. Hypergraphs

The subsequent sections deal with the basic notions of hypergraphs. The definitions provided
have been adapted from Ref. [61].

2.1.1. General Definitions

An undirected and weighted hypergraph H = (V,E, c, ω) consists of a set of hypernodes V
and a set of hyperedges E, also known as nets, as well as vertex weights c : V → R≥0 and
net weights ω : E → R>0. The size of the hypernode set V is given by n := |V | and the
size of the hyperedge set E is defined by m := |E|. Each hyperedge e ∈ E is a subset of
hypernodes e ⊆ V . A hypernode v ∈ V is incident to a net e ∈ E if v ∈ e. Those v ∈ e are
also called pins. The number of pins is given by p := ∑

e∈E |e| whereby |e| denotes the number
of hypernodes v ∈ V that are incident to e. This cardinality is also known as hyperedge
size or number of pins within e. For a given hypernode v ∈ V , the set of neighbours of v
is defined by Γ(v) := {u | ∃e ∈ E : {v, u} ⊆ e}. Furthermore, I(v) := {e ∈ E | v ∈ e} is the
set of all nets that are incident to v. The degree of a hypernode v can then be expressed by
deg(v) := | I(v) |. For convenience, the two weight functions c and ω may also be extended to
sets in the following way: c(U) := ∑

v∈U c(v) and ω(F) := ∑
e∈F ω(e). Moreover, two nets e1

and e2 are called parallel if they contain the same pins, i.e., e1 = e2.

2.1.2. Partitions and Partitioning Problem

A k-way partition Π of a hypergraph H = (V,E, c, ω) is a set of k blocks Vi, i.e., Π =
{V1, ..., Vk}. In addition to that, ⋃ki=1 Vi = V ; Vi 6= ∅ for 1 ≤ i ≤ k; and Vi∩Vj = ∅ for any i 6= j
must hold so that Π is a valid partition. Furthermore, a k-way partition Π is called ε-balanced
if all blocks Vi of Π meet a balance constraint. In particular, c (Vi) ≤ Lmax := (1 + ε)

⌈
c(V)
k

⌉
needs to be fulfilled for all 1 ≤ i ≤ k. For a given 1 ≤ i ≤ k, Vi is called underloaded if
c (Vi) < Lmax and overloaded if c (Vi) > Lmax. Given a net e ∈ E, the connectivity set Λ(e)
is defined by Λ(e) := {Vi ∈ Π |Vi ∩ e 6= ∅}. Additionally, the connectivity λ(e) of a particular
net e can be expressed by λ(e) = |Λ(e) |. Those e for whom λ(e) > 1 is fulfilled are called
cut-nets whereas nets with λ(e) = 1 are known as internal nets.
The k-way hypergraph partitioning problem entails finding an ε-balanced, k-way partition Π
of the hypergraph H = (V,E, c, ω) while minimising an objective function f(Π). Common
objective functions are the cut-net metric fc(Π) := ∑

e∈E′ ω(e) as well as the connectivity
metric fλ(Π) := ∑

e∈E′ (λ(e)− 1)ω(e) which will mainly be used within this work. The set E ′
denotes the set of cut-nets within the given partition Π. Unfortunately, optimising each of
these metrics is NP-hard. Compare for example Ref. [61] for more details on that.
Rather than working on a hypergraph H = (V,E, c, ω) as a whole, it might be useful to
contract vertices reducing the input size of a partitioning algorithm. Contracting a tuple of
hypernodes (u, v) with u, v ∈ e, u 6= v for an e ∈ E means merging v into u. In order to

11

2 Preliminaries

do so, the node weight of u is updated, i.e., c (u) := c (u) + c (v). Also, it is necessary to
connect u with the neighbourhood of v by replacing v with u in all nets e ∈ I(v) \ I(u) and
removing v in all e ∈ I(v) ∩ I(u). Additionally, parallel edges arisen from this operation are
removed except for one. The net weight of the remaining edge will be set to the sum of the
removed edges plus the original weight of this edge. Moreover, single vertex nets that have
been created by contractions are discarded. Uncontracting vertex u reverts the operations
within the contraction. Uncontracted vertices are part of the same partition block and the
node weight of u is updated to c (u) := c (u)− c (v).

2.2. Machine-Learning
Machine-learning describes a set of algorithms that try to extract knowledge from data through
statistical learning. The subsequent section deals with the logistic regression model. The def-
initions provided have been adapted from Ref. [71]. Thereafter, the dimensionality reduction
technique PCA is briefly introduced whose definitions also originate from Ref. [71]. Rather
than implementing these techniques by hand, we use tools that are introduced later on in this
work.

2.2.1. Logistic Regression

Logistic regression, also logistic classification, is a statistical method for supervised machine-
learning. The use-case within this work requires classifying data in one of two classes ω1 and
ω2. The goal is to estimate the posterior probabilities P (ωi |x), i.e., the probability that given
an input x, x belongs to class ωi. Naturally, P (ω1 |x) and P (ω2 |x) sum up to 1. For the two
class use-case, the regression model is defined as

ln P (ω1 |x)
P (ω2 |x) = θ0 + θTx , (2.1)

whereby the term θ0 + θTx with θ0 ∈ R, θ = (θ1, ..., θn) ∈ Rn is also referred to as logit. By
taking into account that the posteriors sum up to 1 and defining t := θ0 + θTx, the regression
model can be transformed to

P (ω1 |x) = σ(t) , σ(t) := 1
1 + exp(−t) , (2.2)

whereby σ(t) is referred to as the logistic sigmoid or sigmoid link function. The training
samples used to train the parameter vector θ and the bias θ0 are written as (yn, xn) with
n ∈ {1, ..., N} and yn ∈ {0, 1}. The parameters θ0 and θ can then be estimated using the
likelihood function

P (y1, ..., yN ; θ0, θ) =
N∏
n=1

(
σ
(
θ0 + θTxn

))yn
(
1− σ

(
θ0 + θTxn

))1−yn . (2.3)

Using the exponents yn and 1 − yn is a common way to avoid different cases in the formula,
i.e., if yn = 1, the second factor becomes 1 and if yn = 0, the first factor becomes 1. For the
machine-learning model, the negative log-likelihood function given by

L(θ0, θ) = −
N∑
n=1

(
yn ln

(
σ
(
θ0 + θTxn

))
+ (1− yn) ln

(
1− σ

(
θ0 + θTxn

)))
, (2.4)

12

2.2 Machine-Learning

is minimised. It is also referred to as cross-entropy error. Minimisation is done by iteratively
calculating gradients, which are for example used within the gradient descent method. Refer
to Ref. [71] for more information.

2.2.2. Principal Component Analysis (PCA)

Real-world problems often have a high-dimensional feature space. However, the observed
systems or processes are usually based on a smaller number of variables that probably can
not directly be observed. These variables are projected into feature space which in turn can
be observed. The dimensionality reduction technique used within this work is the Principal
Component Analysis (PCA). Refer to Ref. [71] for more information.
It is assumed that the given input xn ∈ Rl, n ∈ {1, ..., N} is a random vector with distribution
N (0; 1). However, if the input is distributed with N (µ;σ2), the input should be normalised
with xn−µ

σ
. The principal component analysis consists of iteratively calculating the axes re-

ferred to as principal components along which the data has its largest remaining variance. If
u1 denotes the first principal component, the variance of the data projected along u1 can be
expressed by

J(u1) = 1
N

N∑
n=1

(
uT1 xn

)2
= 1
N

N∑
n=1

(
uT1 xn

) (
xTnu1

)
= uT1 Σ̂u1 ,

with Σ̂ := 1
N

N∑
n=1

xnx
T
n .

(2.5)

Σ̂ is the sample covariance matrix which is symmetric and positive semi-definite. To maximise
the variance along the direction of u1, the constrained optimisation problem given by

u1 = arg max
u

uT Σ̂u , so that uTu = 1 (2.6)

is considered. It can be solved using the Lagrangian multiplier

L(u, λ) = uT Σ̂u− λ
(
uTu− 1

)
. (2.7)

Setting its gradient equal to zero yields

Σ̂u = λu . (2.8)

In other words, finding the direction along which the sample data has its largest variance
is equivalent to finding the normalised eigenvector u to the largest eigenvalue λ. Repeating
this for the second largest eigenvalue and so on yields l principal components. Because Σ̂
is symmetric and positive semi-definite as mentioned before, λ1 > ... > λl > 0. It is very
likely, that the first m < l principal components already explain a large amount of the sample
variance. If this is the case, the sample vectors xn ∈ Rl might be transformed to Rm by
calculating (u1 | ... |um)T xn without losing much information.

13

3 Related Work

3. Related Work
This section briefly summarises other works that are related to the presented approach. There
is lots of related work on graph partitioning which is summarised in Ref. [9, 66], however,
since we focus on hypergraph partitioning, only the most important results will be mentioned
in the subsequent sections. First, the multi-level paradigm will be introduced in Section 3.1
by explaining the different phases within it. Second, the usage of machine-learning techniques
for search-space pruning on other problems will be presented in Section 3.2.

3.1. Multi-level Hypergraph Partitioning

The multi-level paradigm has become one of the most important heuristics in hypergraph par-
titioning. Rather than partitioning a hypergraph directly, the heuristic relies on a three-phase
approach which is for example described in Ref. [2, 39, 42]. Fig. 1 illustrates these phases.
During the coarsening phase a hierarchy of gradually smaller hypergraph approximations is
built that try to maintain the overall structure of the hypergraph. The initial partitioning
phase partitions the smallest approximation of the original hypergraph. Finally, the uncoars-
ening phase tries to successively go from smaller to larger hypergraphs within the hierarchy
built by the coarsening phase while performing a local search algorithm for each uncontraction
to refine the yielded solutions. This step is also known as refinement.

Input OutputInitial
Parti-
tioning

Coarsening Uncoarsening

Figure 1: Schematic depiction of the multi-level hypergraph paradigm. Nodes with same
colour belong to the same block of a partition.

Moreover, the coarsening phase tries to gradually build approximations that are structurally
similar. As already mentioned in Section 1.1, highly connected vertices are contracted because
they are very likely to end up in the same block of a partition. However, there are plenty of
rating functions that measure the connectivity between two vertices. Some of these connec-
tivity metrics have been used as features in the presented approach. Refer to Section 4.2 for
more information.

3.1.1. Coarsening Phase

In the following, coarsening phases of different hypergraph partitioning algorithms are out-
lined. All these algorithms have in common that they introduce techniques used later on in
this work.

dKLFM. The two-level algorithm dKLFM proposed by Goldberg and Burstein [27] is based
upon the results yielded by their evaluation of the Fiduccia-Mattheyses algorithm (FM). The

15

3 Related Work

FM algorithm [22] is a greedy algorithm that successively swaps nodes between blocks, one
at a time, to iteratively improve the overall solution quality and is still the basis for many
bipartioning algorithms. It is also used in a majority of modern hypergraph partitioners
up to today [12]. In particular, they analysed the quality of the solutions yielded by the
FM algorithm on hypergraphs with different network ratios r(H). The network ratio of a
hypergraph is defined by r(H) := (p−m) /n whereby p is the number of pins, m the number
of nets and n the number of hypernodes. It is a common measure for the denseness of
a hypergraph H. Moreover, Goldberg and Burstein [27] found out that on the one hand
for hypergraphs with r (H) < 3 the FM approach performs poorly whereas for r(H) > 5
the results were nearly optimal. Because important hypergraph classes like the hypergraphs
produced from VLSI circuit designs have network ratios below 3 (i.e., 1.9 < r(H) < 2.5 [27]), it
is necessary to extend the original FM algorithm. As mentioned earlier, the dKLFM algorithm
is a two-level approach. In a first step, a matching is computed and contracted to create a
more dense hypergraph regarding to the network ration, i.e., decreasing r(H). Thereafter,
a random bipartition of the coarsened hypergraph is used to compute a partition. The FM
algorithm is then used to refine the initial partition resulting in a partition for the original
hypergraph. The network ratio metric as well as the idea of creating successively more dense
approximations of the original hypergraph is used within this work.

HGCEP. The hierarchical gradual constraint enforcing algorithm (HGCEP) proposed by Shin
and Kim [68] makes use of a clustering technique based on the closeness of a pair of vertices
to coarsen the hypergraph. In particular, the closeness of a pair of hypernodes u, v is defined
by

closeness(u, v) := | I(u) ∩ I(v) |
min(deg(u) , deg(v)) − α ·

c(u) + c(v)
c

. (3.1)

However, successively contracting the nodes that are closest together may produce vertex
weights that differ significantly among each other. To deal with this, a weaker form of the
balance constraint is initially used. More balanced block weights are then produced by later
iterations of the approach which is also eponymous for the algorithm, i.e., gradual constraint
enforcing algorithm. Since successively contracting nodes maximising a particular rating func-
tion is a meta-heuristic often used in coarsening, this idea as well as the employed closeness
metric by the HGCEP algorithm is further used throughout this work.

Strawman. The Strawman algorithm is a multi-level approach proposed by Hauck [31] and
is backed by extensive evaluation of Hauck and Borriello [29, 30] concerning bipartition tech-
niques for the coarsening phase. The resulting algorithm combines several clustering tech-
niques. Besides a random clustering technique based on Ref. [50] and the K-L clustering algo-
rithm [23], the bandwidth clustering approach introduced by Roy and Sechen [58] as well as
a newly introduced connectivity clustering algorithm which is inspired by the work of Schuler
and Ulrich [65] is used. The bandwidth clustering approach mainly consists of applying its
rating function defined by

ψ(u, v) :=
∑

e∈I(u)∩I(v)

1
|e| − 1 , (3.2)

and contracting hypernodes u with their highest rated neighbours v ∈ Γ(u). The bandwidth
metric is a measure for the count of common small nets. The more small common nets there

16

3.1 Multi-level Hypergraph Partitioning

are, the higher are the chances that parallel edges are created when contracting v into u.
Moreover, the introduced connectivity clustering algorithm takes this idea even further. The
connectivity metric that is used therein can be expressed using the previously introduced
bandwidth metric,

con(u, v) := 1
c(u) · c(v)

Ψ(u, v)
(deg(u)−Ψ(u, v)) (deg(v)−Ψ(u, v)) . (3.3)

Recall that the numerator is a measure for the count of common small nets. Additionally,
the denominator ensures that the formed clusters are connected with few other incident nets
leading to the formation of clusters that are highly connected in itself but loosely coupled
to other clusters. Because of these useful properties, both metrics are used later on in this
work. The connectivity clustering approach discussed visits all nodes u ∈ V of a hypergraph
H = (V,E, c, ω) in random order and contracts node v ∈ Γ(u) with the highest connectivity
con(u, v) into u. This approach also has been adapted by this work but rather than using a
fixed rating function, a machine-learning based approach is used to make this kind of decisions.

hMETIS. The hMETIS algorithm is a multi-level partitioning system introduced by Karypis
et al. [37, 38, 39]. While the initially proposed version is based on recursive bisection, a
newer version uses direct k-way partitioning [41, 42, 43]. The coarsening scheme of the initial
version is mainly based on two observations. On the one hand, the coarsening should create
approximations on which the initial partitioning algorithm produces similar solution qualities
compared to the final partition. On the other hand, a reduction of the pin size p resulting
in smaller hyperedges leads to better performances of refinement algorithms especially if the
refinement algorithm uses a move-based approach because they tend to work better on smaller
nets. The edge coarsening algorithm (EC) that is employed in the hMETIS algorithm visits
nodes u in random order similar to the Strawman algorithm. In addition to the contraction
of node u with node v ∈ Γ(u) maximising a certain rating metric, only unmatched nodes are
taken into account, so that the vertex weights of the coarse hypergraph are distributed more
equally. To be more precise, hypernode u is matched with its unmatched neighbour v ∈ Γ(u)
maximising

con(u, v) :=
∑

e∈I(u)∩I(v)

ω(e)
|e| − 1 . (3.4)

For unit net weights the connectivity metric of the hMETIS algorithm is equal to the band-
width clustering rating function in Equation 3.2. However, there are two problems with the
matching based coarsening algorithm EC. First, a node u may only be part of one contraction
leading to poor progress of the coarsening which in turn requires more iterations of the algo-
rithm. Second, only nets of size 2 can be removed and only if the two pins are matched. There
are modifications to the original EC algorithm which are namely the hyperedge coarsening
algorithm (HEC) as well as the modified hyperedge coarsening algorithm (MHEC). Both deal
with this problem by performing a preprocessing step before the actual coarsening takes place.
For more information on that refer to the given references. The approach presented within
this work also uses a matching-based rating strategy to coarsen the hypergraph.

KaHyPar. The Karlsruhe Hypergraph Partitioner (KaHyPar) [2, 62] is a direct k-way
multi-level partitioner developed at the Karlsruhe Institute of Technology. While other par-
titioners often use clustering or matching based approaches in coarsening which leads to an

17

3 Related Work

approximation hierarchy of O(log n) levels, KaHyPar only removes a single hypernode per
level yielding O(n) levels in the hierarchy. This approach is beneficial for the local search
heuristic employed in the refinement phase. Moreover, the coarsening phase also takes re-
course to the rating function used by hMETIS [39] which is defined in Equation 3.4 and also
used by other popular partitioners like Parkway [72] and PaToH [10]. Similar to the coarsening
scheme of the Strawman algorithm [31], all nodes are visited in random order and contracted
with their neighbour of highest rating according to the employed rating function. This is
repeated in several passes until a proper hypergraph size is reached that can be used in the
initial partitioning phase or there are no viable contractions left. While other partitioners
that use clustering or matching based approaches create a new hypergraph at each pass based
on the information provided by the matching or clustering, the single contractions made in
the KaHyPar algorithm immediately alter the underlying data structure increasing the overall
performance because no large-scale hypergraph restructuring is needed. As an initial parti-
tioning algorithm, KaHyPar uses an n-level recursive bisection algorithm together with a
pool of other greedy heuristics [62]. The algorithm employed in the refinement phase is based
on a local search heuristic inspired by the original FM heuristic [59].

KaHyPar-CA. Heuer and Schlag [35] proposed an addition – KaHyPar-CA – to the orig-
inal KaHyPar algorithm regarding the employed coarsening. Continuing the thoughts of
Karypis and Kumar [41, 42, 43] that coarsening should reduce hyperedge sizes, coarse hy-
pergraphs should contain less nets, and approximations of the original hypergraph should
be structurally similar, they point out an approach that identifies community structures in
coarsening. A community is a cluster of nodes that are highly connected to each other but
rather sparsely connected to other communities. The approach presented is two-fold. First, a
community detection algorithm which provides a set C = {C1, ..., Cx} of communities is per-
formed. Thereby, they use the modularity function of Newmann and Girvan [51] to evaluate
the quality of the division into communities (disjoint subgraphs). In a second step, a coarsen-
ing algorithm is executed on each of these disjoint communities while avoiding the contraction
of hypernodes u, v from different communities, i.e., u, v must be in the same community Ci.
Only contracting nodes of the same community maintains the overall structure of the original
hypergraph in the approximation.

KaHyPar-E. Different from the approaches described before, the KaHyPar-E algorithm
[5, 53] is the first multi-level memetic approach on hypergraph partitioning. Memetic or
evolutionary algorithms are inspired by the Darwinian concept of survival of the fittest in
evolutionary biology and consist of two main operations, i.e., recombination and mutation. A
partitioning algorithm that includes some kind of random selection in the coarsening phase is
used to build an initial population of solutions. The fitness of an individual may be evaluated
by the connectivity objective function fλ. Thereafter, the initial population is iteratively
evolved by recombining and mutating individuals by a given probability using the steady-state
paradigm [15].

3.1.2. Refinement Phase

Since this work mainly focuses on the preprocessing and contraction of hypergraphs, the
techniques used in refinement are only briefly explained. Local search heuristics are used to

18

3.2 Learning Heuristics for Search-Space Pruning

refine the initial partition along the hierarchy of approximations built by the coarsening phase.
Rather than searching for a global optimum regarding the chosen objective function which is
infeasible for relevant hypergraph instances due to their sizes, a local search aims to find a
local optimum in the neighbourhood of the nodes to uncontract at each level of the hierarchy.
Modern hypergraph partitioners such as in Ref. [2, 4, 6, 11, 16, 35, 36, 39, 42, 62, 72, 74]
either use variations of the Fiduccia-Mattheyses (FM) [22, 59] or Kernighan-Lin (KL) [44, 67]
algorithm, or even use simpler heuristics with a greedy approach [39, 42]. However, recent
refinement algorithms also use network flow-based approaches [28, 34].

3.2. Learning Heuristics for Search-Space Pruning

The approach using a machine-learning algorithm to prune search-space of optimisation prob-
lems is not new. This section briefly presents two recent approaches using this technique.
The approach presented within this work is quite similar to the approaches shown. However,
feature selection and related problems are quite different because of different problem do-
mains. Although this difference, the problem of hypergraph partitioning and the optimisation
problems that are dealt with in the following approaches coincide in the fact that they are all
NP-hard which means that there is not any polynomial-time algorithm for these problems
unless P = NP .

3.2.1. Search-Space Pruning for Clique Detection

Lauri et al. [47] successfully applied logistic classification to prune search-space for clique
detection in graphs G = (V,E). They used machine-learning algorithms to prune search-
space for the detection algorithm rather than learning the output function of the optimisation
problem directly. This difference is illustrated in Fig. 2. The instances that are coloured the

Figure 2: Comparison between pruning search-space and learning exact decisions.

same belong to the same output class, e.g., black nodes belong to class ω1 (e.g., node belongs
to a clique) and white nodes to ω2 (e.g., node does not belong to a clique). Rather than
learning a classification directly for a given input vector x, i.e., P (ω1 |x) ≥ 1

2 ⇔ x belongs
to ω1 (which is depicted through the dashed curve), they only make a statement about one

19

3 Related Work

direction, i.e., P (ω2 |x) ≥ 1
2 ⇒ x belongs to ω2 which refers to the line in Fig. 2. In other

words, they prune nodes that are unlikely to be in a clique improving the performance of the
actual clique detection algorithm.
There are two categories of computational features used in the employed machine-learning
model. On the one hand, they used features based on the nodes of the graph, i.e., f : V → Rn.
On the other hand, features on edges e = (u, v) ∈ E have been used, i.e., fe : E → Rn. The
latter is also useful for the approach presented throughout this work because there are features
that can be used for edges in graphs as well as for pairs of adjacent pins in hypergraphs. Those
features include statistical features using the Pearson χ2-metric [55, 56] as well as similarity
measures which originate from set theory and are frequently used in community detection in
graphs [1]. The Pearson χ2-metric is defined as

χ2 :=
∑
v∈A

(Ov − Ev)2

Ev
, (3.5)

whereby A ⊆ V . The variables Ov and Ev represent the actually observed and the expected
value for a particular metric. In this work, the χ2-metric of hypernode degrees is used. Refer
to Section 4.2 for more information. Apart from that, similarity measures similar to the ones
presented in Ref. [47] are employed which are namely Jaccard indices, Dice similarity, and
Cosine similarity. Jaccard indices, which are also called Intersection over Union (IOU), are
used to compare the similarity of the neighbourhoods of adjacent pins u and v. In general,
they are defined as

J(A,B) := |A ∩B |
|A ∪B |

, (3.6)

whereby the sets A and B are instantiated with the neighbourhoods Γ(u) and Γ(v). The
Dice and Cosine similarities are also used to express the similarity of the neighbourhoods of
adjacent pins. Their definitions can either be found in Section 4.2 or Appendix A.3.
As mentioned before, Lauri et al. [47] used a supervised machine-learning approach based on
similarity features. There are also other approaches using unsupervised learning like for ex-
ample restricted Boltzmann machines [54] which try to acquire information on the unknown
distribution of good solutions as well as Reinforcement learning approaches [45, 49] which use
architecturally difficult deep learning models to make predictions about the problem consid-
ered. However, these approaches are very complex by design and therefore hard to analyse on
a mathematical level. As a consequence of that, it is also unclear which features of the sample
data are being exploited in a trained model. These are the reasons, among others, to prefer a
supervised approach for this work.

3.2.2. Learning Objective Boundaries for Constraint Optimisation Problems

Spieker and Gotlieb [69] propose a similar approach for Constraint Optimisation Problems
(COP). A Constraint Optimisation Problem consists of a set of variables X , a set of constraints
C on the variable values as well as an objective function f to optimise while still fulfilling
all constraints C. These kind of problems are part of many applications like for example
traffic optimisation [33], optimisation of resource allocation in construction management [32] or
utility maximisation problems in economics [57]. The approach presented [69] uses supervised
machine-learning techniques to estimate close boundaries for the variables in set X . The

20

3.2 Learning Heuristics for Search-Space Pruning

proposed machine-learning model has been trained on both global and per-variable (local)
feature values. As global features, the number of variables and constraints are used among
other global information. Additionally, there are local features that are computed per variable
x ∈ X . These consist of statistical features on the distribution of all values x was assigned to
in the computation of the label-providing algorithm. If Ax denotes the sequence of values x
was assigned to in the label-providing algorithm, local features such as the number of different
values in Ax, minAx, maxAx, standard deviation, quartiles, means, etc. can be defined.
Spieker and Gotlieb also show that although global features are less descriptive regarding the
problem instance – same-sized problems may look inherently different – they provide additional
information that improve the overall accuracy of the proposed machine-learning model. For
that reason, this work also employs global statistics on a given hypergraph instance as well as
local features that are evaluated for pairs of adjacent hypernodes.

21

4 Machine-Learning based Hypergraph Pruning for Partitioning

4. Machine-Learning based Hypergraph Pruning for
Partitioning

The subsequent Section 4.1 contains the main idea of the approach presented in this thesis.
Also, the selection process of the hypergraph features as well as a few remarks on the feature
computation will be given in Section 4.2 and 4.3. Thereafter, we explain the decisions made
concerning the model training in Section 4.4. Finally, we introduce the algorithm for the
actual hypergraph pruning in Section 4.5 which combines all the building blocks presented.

4.1. Idea

This section aims to introduce the basic workflow behind the presented approach. Altogether,
there are three parts, i.e., the sample generation, the model training and the actual pruning
algorithm for hypergraph partitioning. Compare Fig. 3 for a rough overview.

Load Hypergraphs Calculate Fea-
ture Vectors Write Training Data

1 Sample generation

2 Model Training

3 HyPar Pruning

Read and Pre-
process Data

Train and Val-
idate ModelSave Model Weights

Load Saved ModelCalculate Fea-
ture VectorsLoad Hypergraph

Contract Nodes
by Threshold

Actual Hyper-
graph PartitioningUncontract Nodes

Figure 3: Architecture of the presented approach.

Model training is highly sensitive to quality and amount of the used data. Sample generation
loads a predefined set of hypergraphs called the training set and calculates feature vectors

23

4 Machine-Learning based Hypergraph Pruning for Partitioning

based on the features that will be presented in the subsequent Section 4.2. Information on the
chosen (training) data is given in Section 5.1.1. A feature vector may be calculated for each
pair of hypernodes (u, v) with u 6= v, u, v ∈ e for any e ∈ E. Because the number of such pairs
increases quadratically with increasing edge size |e|, we consider only a linear amount of pairs.
Details on the feature computation will be given in Section 4.3. For model training purposes,
the feature vectors have to be labelled in order to estimate a pruning function. For a pair of
hypernodes (u, v), the class label yu,v ∈ {0, 1} defines whether they belong to the same block
of a given partition. Algorithms and configurations used to compute this partition are given
in Section 5.1.2.
Model training then uses the previously generated and labelled feature vectors to train a
logistic classifier. How to deal with different value ranges and class sizes among the generated
features is explained in detail in Section 4.4.
With these two steps done, the actual preprocessing algorithm for hypergraph partitioning is
applicable. We use the previously trained model to make predictions about pair of nodes as
discussed earlier. Pair of hypernodes that are predicted to be part of the same block in the
output are contracted. After applying the actual partitioning algorithm, we uncontract the
previously contracted nodes again. More information on this approach is given in Section 4.5.

4.2. Feature Selection
Because of the heterogeneity of the hypergraphs belonging to the training set, we use local
features as well as global statistics on the particular hypergraph. Initially, we have considered
37 features that can be divided into the following categories. They are either common hyper-
graph metrics, features adapted from Ref. [47, 69], or connectivity metrics that are part in
the coarsening phase of other partitioning algorithms [27, 31, 58, 65, 68]. In the end, we have
selected 25 features by calculating the correlation matrix and iteratively eliminating features
that correlate with ρ > 0.9. Thereafter, the correlation matrix of the remaining features only
contains values less than 0.9. In the following, we only present those 25 selected features.
Refer also to Appendix A.3 for a brief overview of all features. Moreover, a feature vector
fu,v = (f1, ..., fn)T ∈ Rn is given by putting the proposed n = 25 features into a vector. As
mentioned before, we may calculate this vector for each pair of hypernodes (u, v) with u 6= v,
u, v ∈ e for any e ∈ E.

4.2.1. Global Hypergraph Features

Besides the standard classification numbers of hypergraphs H = (V,E, c, ω) which are the
number of vertices n (F1), the number of edges m (F2), and the number of pins p (F3), we
also consider the network ratio (F4) as a feature. This ratio is defined by r(H) := (p−m) /n
and is a general measure for the overall denseness of a particular hypergraph. In addition to
that, the network ratio is quite similar for hypergraph instances originating from the same
field of application. Instances that are derived from electrical circuits (VLSI) for example have
network ratios in between 1.9 < r(H) < 2.5 [27] while other classes have other ranges.
Furthermore, statistical features concerning node degrees and edge sizes are used, namely
averages, deviations, and quartiles. However, we do not consider the average node degree
deg(V) as a feature because of its high correlation with the previously introduced network
ratio; compare Ref. [27] or Appendix A.4 for more information. In contrast to that, we

24

4.2 Feature Selection

consider the standard deviation (F5), the minimum (F6), the maximum (F7) as well as the
first quartile of hypernode degrees (F8) as features. Median and third quartile of node degrees
are dropped because of their high correlation with the network ratio once again. In respect to
hyperedge sizes, we use the average (F9), the standard deviation (F10) as well as the maximum
(F11) while the minimum and the quartiles of edge sizes are dropped due to high correlation
with the minimum (F6) and first quartile of hypernode degrees (F8) respectively. In total, we
use eleven global features to distinguish different hypergraph classes in the regression model
applied.

4.2.2. Hypernode Pair Features

Apart from global features, there are also metrics for pairs of adjacent hypernodes (u, v). First,
we discuss features working on the neighbourhood of Γ(u) and Γ(v). Second, we apply statis-
tical measures on this neighbourhood of u and v. Finally, we discuss connectivity measures
working with the incident nets I(u) and I(v).
Regarding the neighbourhood Γ(u) and Γ(v), we use the size of common neighbours |Γ(u) ∩
Γ(v) | (F12), the size of all neighbours |Γ(u) ∪ Γ(v) | (F13) as well as Jaccard indices (F14)
which are defined by

J(u, v) := |Γ(u) ∩ Γ(v) |
|Γ(u) ∪ Γ(v) | . (4.1)

Other neighbourhood similarity features are the Dice similarity (F15) defined by

D(u, v) := 2 |Γ(u) ∩ Γ(v) |∑
w∈Γ(u)∩Γ(v) deg(w) , (4.2)

which is also known as the F1-score in statistics; as well as the Cosine similarity (F16) defined
by

C(u, v) := |Γ(u) ∩ Γ(v) |√
deg(u) deg(v)

. (4.3)

All these similarity measures have been adapted from Ref. [47].
Regarding the statistical measures of the neighbourhoods, the following features are used.
Besides the average of the node degrees of u and v itself (F17) and the average of the node
degrees of their common neighbours (F18), we also use the χ2-metric of hypernode degrees of
the common neighbours (F19) defined by

χ2
deg,∩(u, v) :=

∑
w∈Γ(u)∩Γ(v)

(
deg(w)− deg(V)

)2

deg(V)
. (4.4)

Analogous to this, we use the average node degrees of all neighbours Γ(u)∪Γ(v) (F20) as well
as the χ2-metric of hypernode degrees of all neighbours (F21) defined by

χ2
deg,∪(u, v) :=

∑
w∈Γ(u)∪Γ(v)

(
deg(w)− deg(V)

)2

deg(V)
. (4.5)

The usage of χ2-metrics has been inspired by Lauri et. al. [47].

25

4 Machine-Learning based Hypergraph Pruning for Partitioning

Finally, we use four connectivity metrics as features that have already proved successful in
their application domain. Shin and Kim [68] introduced a closeness metric that is used within
their HGCEP algorithm and targets the application area of circuits (VLSI). A modified version
of the original closeness metric (F22) is used as a feature defined by

closeness(u, v) := | I(u) ∩ I(v) |
min(deg(u) , deg(v)) . (4.6)

Moreover, we also use the rating function introduced within the bandwidth clustering algorithm
of Roy and Sechen [58] (F23) as a feature. The rating function is defined by

Ψ(u, v) :=
∑

e∈I(u)∩I(v)

1
| e| − 1 (4.7)

This rating function is also employed in the coarsening phases of the hMetis [39] and the
KaHyPar partitioner [2, 62] in a modified version (i.e., edge weights are added to the numer-
ator). To put it bluntly, the bandwidth metric is a measure for the count of common small
nets. The more small common nets there are, the higher are the chances that parallel edges
are created when contracting v into u. Based on this metric, Schuler and Ulrich [65] propose
a connectivity metric that incorporates the previously introduced metric. We use a modified
version of this connectivity metric (F24) defined by

connectivity(u, v) := Ψ(u, v)
(deg(u)−Ψ(u, v)) (deg(v)−Ψ(u, v)) (4.8)

The original metric is also used within the Strawman multi-level algorithm [31]. While the
bandwidth metric is a measure for the number of common small nets, the Strawman connec-
tivity extends this by taking the neighbourhood of the considered nodes into account. The
less nets are incident to u and v apart from the common nets considered, the greater are the
values of the metric inducing a strongly connected cluster of nodes. Finally, we use the number
of common incident nets | I(u)∩ I(v) | (F25) itself as a feature. In total, there are 25 features
used throughout this work. Refer to Appendix A.4 for more information about the correlation
between them.

4.3. Feature Computation
As mentioned earlier, a feature vector fu,v = (f1, ..., fn)T ∈ Rn is given by n ordered feature
values regarding pairs of adjacent nodes (u, v). The indices on f are omitted if not necessary
in the particular context. To speed up model training, we combine a batch of b feature vectors
into a feature matrix F =

(
f (1) | ... | f (b)

)T
∈ Rb×n used to make predictions or train b samples

at a time. This matrix is also known as a training batch. For implementation details refer to
Section 5.1.2.
In order to use a supervised learning approach, we have to provide labels yu,v ∈ {0, 1} for any
sample in the set of s samples. To be more precise, yu,v = 1 ⇔ u, v ∈ Vi with i ∈ {1, ..., k}
for a given k-way partition Π = {V1, ..., Vk}. This partition Π is calculated by a partitioning
algorithm with configuration χ including the number of blocks k and the imbalance parameter
ε. The training set Dχ can then be expressed as Dχ = {(fi, yi) | i ∈ {1, ..., s}}. Algorithm 1
calculates this sample set Dχ.

26

4.4 Model Training

Algorithm 1: Algorithm for training sample generation
Input: A hypergraph H = (V,E, c, ω), a hypergraph partitioning algorithm partχ : H → Π

with configuration χ containing k, ε and a feature extractor feature : V × V → Rn

1 Π← partχ(H) // Compute partition for labelling
2 Dχ ← {} // Set of samples
3 foreach e ∈ E do
4 Choose A ⊆ e× e, such that |A| ∈ Θ(|e|)
5 foreach (u, v) ∈ A do
6 fu,v ← feature(u, v) // Compute feature vector

7 yu,v ←

1 if ∃V ′ ∈ Π: u, v ∈ V ′

0 else
// label whether nodes belong to same block

8 Dχ ← Dχ ∪ {(fu,v, yu,v)}

Output: Training sample set Dχ

First, we use a hypergraph partitioner to obtain a partition Π for labelling purposes as de-
scribed before. With that completed, we successively compute feature vectors for node pairs
(u, v). However, to limit sample size and remove redundant information, we only consider
a linear amount of pairs per hyperedge. One possible way of achieving this is by defining
A :=

{(
vi, vi+1 mod |e|

)
| e =

{
v1, ..., v|e|

}
, i ∈ {1, ..., |e|}

}
. The set A forming a circle has the

benefit of being fully-connected which means that if G = (VG, EG) is a simple undirected
graph with VG = e and EG = A, there is a path between each pair of nodes (a, b) ∈ VG × VG.
This allows us to maintain information on all (transitive) relations between the pins in the
resulting sample set.

4.4. Model Training

This section explains the choices made concerning the training of the machine-learning model.
While Section 4.4.1 shows the overall model architecture, the remaining sections deal with
details of it. Section 4.4.2 describes the process of input normalisation whereas Section 4.4.3
deals with the reduction of dimensions in feature space. Section 4.4.4 deals with the problems
of overfitting and how to overcome them. Thereafter, we describe how to deal with unbalanced
class sizes in Section 4.4.5. Finally, we show how the sample data is split for evaluation
purposes in Section 4.4.6 as well as how we tune the involved hyperparameters in Section 4.4.7.

4.4.1. Model Architecture

The machine-learning modelM used throughout this work is a logistic regression model with
elastic-net penalty and Adam optimisation. We already have introduced logistic regression in
Section 2.2.1, whereas elastic-net penalisation is subject to Section 4.4.4. The Adam optimisa-
tion algorithm [46] can be summarised as an improvement to the traditional gradient descent
method that uses moments to avoid getting stuck in local optima. Moreover, the modelM can
be expressed as a tupleM = (θ0, θ; β1, β2, λ, γ) whereby θ = (θ1, ..., θn) ∈ Rn denotes a vector
of trainable weights, θ0 is a trainable variable to model bias in the given data, β1, β2 ∈ [0, 1)
are the hyperparameters for the Adam optimiser called the exponential decay rates for the

27

4 Machine-Learning based Hypergraph Pruning for Partitioning

moment estimates, and λ ∈ R>0, γ ∈ [0, 1] are hyperparameters used for the elastic-net pe-
nalisation. In the context of machine-learning, a hyperparameter is a parameter that is fixed
throughout the learning process whereby trainable parameters are iteratively altered in this
process.
Training data Dχ consists of s samples in the form (fi, yi) whereby fi ∈ Rn represents the
n-dimensional feature vector and yi ∈ {0, 1} its class label for any i ∈ {1, ..., s}. Goal of
the model training is to minimise the loss function defined in Equation 2.4. However, this
function is further extended due to problems like overfitting, unbalanced classes, and others in
the following sections. The final loss function used for model training is given in Equation 4.15.
Because the training set Dχ depends upon the configuration χ used to compute the partition,
we train a separate modelMχ for all numbers of blocks k and all imbalance parameters ε for
which the model should make predictions.

4.4.2. Input Normalisation

The feature vector f can also be considered as a vector of random variables F = (F1, ..., Fn)
which is useful for the remainder of this section. Due to different data ranges and distributions
of the individual feature values, it is hard to train and evaluate a model mainly for the two
following reasons that are obtained from Ref. [71]. On the one hand, variables Fi with different
expected values E[Fi] are hard to train and to compare since they are not centred, and on
the other hand, features with higher variance V [Fi] seem to dominate the model significantly
more often, although other features may be more important. To avoid these problems, input is
normalised regarding to its distribution. However, Appendix A.5 reveals that the feature values
are far from being normally distributed but rather follow a gamma distribution Γ(α, β) or a
log-normal distribution Lognormal(µ, σ). To choose the best distribution for each individual
feature Fi, a power transform called Box-Cox transformation is used. The transform is given
by

f
(λbc)
i =


(fi + 1)λbc − 1

λbc
for λbc > 0

ln(fi + 1) for λbc = 0
, (4.9)

whereby λbc denotes a parameter used to find the transform with which the data is closest to be
normally distributed. This parameter is estimated using a likelihood function. For more details
refer to Ref. [8]. Since the Box-Cox transformation requires strictly positive variable values
but for most of our features only fi ≥ 0 holds, we shift all values by one (i.e., fi + 1). Since
the transformed features F (λbc)

i are close to be normally distributed with F (λbc)
i ∼ N (µi, σi),

we can further transform data to zero mean and unit variance by calculating

F
(λbc)
i − µi
σi

∼ N (0, 1) . (4.10)

We can also test the transformed distributions for normality by using the D’Agostino-Pearson
test described in Ref. [13, 52].

4.4.3. Dimensionality Reduction using PCA

As mentioned earlier in Section 2.2.2, systems described by a high-dimensional feature space
often rely on a smaller number of not directly observable variables. By reducing the count of

28

4.4 Model Training

variables, we can speed up model training since fewer gradients have to be calculated to find
local optima. Appendix A.6 shows that p = 20 linear combinations of n = 25 feature vector
values – the principal components – are enough to explain over 99% of the variance on the
training data. A principal component α is given by its coefficients α = (α1, ..., αn)T ∈ Rn.
Principal components are considered in decreasing order of the eigenvalues they refer to, i.e.,
α(1) is the principal component with the largest eigenvalue and α(n) the principal component
with the smallest eigenvalue. Given a feature vector f ∈ Rn, αTf ∈ R defines a new variable
to be used. By using the first p < n principal components and combining them into a matrix
Ap =

(
α(1) | ... |α(p)

)T
∈ Rp×n, we can reduce the n dimensional feature space to p dimensions

by using the feature vector f ∗ = Apf ∈ Rp in model training instead.

4.4.4. Dealing with Overfitting

Overfitting describes the problem of modelling noise within the process rather than only the
process itself. This leads to poor performance on independent test data because of the modelled
noise that does not provide any information. To overcome this problem, regularisation is
introduced. Regularisation techniques have been adapted from Ref. [20] as well as [71].
The idea of regularisation is to avoid high model complexity by keeping a majority of the train-
able weights θ close to zero to avoid modelling noise rather than structural information. This
approach is also explained through the Bias-Variance trade-off that is described in Ref. [71].
Slightly increasing the bias θ0 while simultaneously decreasing the variable weights θ yields an
overall improvement concerning the mean-square error. This behaviour can be accomplished
in model training by introducing a penalty term Ω(θ) in the loss function

Lreg(θ0, θ;λ) = L(θ0, θ) + λΩ(θ) , (4.11)

whereby L is the standard logistic regression loss function introduced in Equation 2.4. Com-
mon choices for the penalty term are the least absolute shrinkage and selection operator Lasso,
also known as L1-regularisation, as well as the ridge regression, also known as L2-regression,
defined by

ΩL1(θ) := ‖θ‖1 =
n∑
i=1
|θi| and ΩL2(θ) := 1

2 ‖θ‖
2
2 = 1

2

n∑
i=1

θ2
i . (4.12)

For best results, it is a common practice to use a convex combination of both given by

Lenet(θ0, θ;λ, γ) = L(θ0, θ) + λΩenet(θ; γ) with Ωenet(θ; γ) := 1− γ
2

n∑
j=1

θ2
j + γ

n∑
j=1
|θj| .

(4.13)
This combination is also called elastic net regularisation.

4.4.5. Dealing with Unbalanced Class Sizes

There are generally two different ways of dealing with unbalanced class sizes. First, it is
possible to reduce the class sizes of classes with too many samples by leaving out some of
them; or the other way round, artificially increasing the sample size by duplicating random
samples of a particular class adding white random noise to avoid overfitting. These techniques
are called under-/oversampling. Second, it is possible to incorporate the class sizes into the

29

4 Machine-Learning based Hypergraph Pruning for Partitioning

model to circumvent too fast fitting to the over-represented class. Or to put it in other words,
increase the cost of misclassifying samples in the under-represented class.
In this work, we have chosen the second approach for mainly two reasons. On the one hand,
leaving out samples antagonises with the goal of a large database of samples. On the other
hand, predicting the over-represented class – two nodes belong to the same block of a partition
– is more important since it is needed in the pruning algorithm to make these predictions right.
However, to avoid overfitting to the over-represented class, cost of misclassifying the under-
represented class – i.e., nodes belong not to the same block of a partition (ω = 0) – is increased
and cost of misclassifying the other class is decreased. We extend the regularised loss function
given in Equation 4.13 by weighting the two classes ω ∈ {0, 1} differently. If s0 denotes the
count of samples with yi = 0 and s1 the count of samples with yi = 1 for i ∈ {1, ..., s},

cj = s0 + s1

sj
for j ∈ {0, 1} , (4.14)

defines the cost scaling factors for the two classes. Including these weights yields the final loss
function for samples (fi, yi), i ∈ {1, ..., s},

Lweighted,enet(θ0, θ;λ, γ) = − 1
2s

s∑
i=1

(
c1yi ln

(
σ
(
θ0 + θTfi

))
+ c0 (1− yi) ln

(
1− σ

(
θ0 + θTfi

)))

+ λ

1− γ
2

n∑
j=1

θ2
j + γ

n∑
j=1
|θj|

 ,

(4.15)

which is used by the machine-learning model in this work.

4.4.6. Train-Validation-Test Split

Recall that training data consists of s samples in the form (fi, yi) for any i ∈ {1, ..., s}. To
evaluate a model, we split the set of training samples into a test set and the set used for
fitting the model. Each modelM is evaluated against the test set that is kept out from any
tuning or training. Again, we split the set used for fitting the model into the actual training
set used for estimating θ0 and θ and the validation set used for tuning the hyperparameters
β1, β2, λ, γ. To eliminate bias from the selection of the samples in the training and validation
set, we use k-fold cross validation. We split the set used to fit the model into k disjoint chunks
Ci that resemble the whole set. Thereafter, we train k independent modelsMi with different
train-validate splits each for any i ∈ {1, ..., k}. ModelMi uses chunk Ci as validation set and⋃k
j=1Cj \ Ci as training set. Model accuracies are determined by averaging the performance

of all those k models. Refer to Ref. [26] for more information about this technique. How the
model performances are determined in detail is given in Section 5.1.3.

4.4.7. Tuning Hyperparameters

As already mentioned in Section 4.4.1, our machine-learning model uses several hyperparam-
eters, namely β1, β2, λ, γ. Hyperparameters are fixed in the training process and are used to
tune the overall behaviour of fitting the model. To find a tuple (β1, β2, λ, γ) that performs well
enough, we do a grid-search using the validation set to tune the hyperparameters. Moreover,

30

4.5 Hypergraph Pruning

the hyperparameters are constrained to a handful of possible values, i.e., β1 ∈
{
β

(1)
1 , ..., β

(a)
1

}
,

β2 ∈
{
β

(1)
2 , ..., β

(b)
2

}
, λ ∈

{
λ(1), ..., λ(c)

}
, and γ ∈

{
γ(1), ..., γ(d)

}
. Because the number of pos-

sible combinations is limited, we can train and evaluate all a × b × c × d models in parallel.
However, there are heuristics like the random search which slightly speed tuning up. For more
information about hyperparameter optimisation, refer to Ref. [48].

4.5. Hypergraph Pruning

The meta-algorithm for hypergraph pruning – given in Algorithm 2 – consists of three phases.
The first phase contracts node pairs, the second performs the actual partitioning on the
contracted hypergraph, and the final phase uncontracts the previously contracted node pairs
and performs refinement.
The first phase ranges from line 1 to 16. The goal of the outer loop is to achieve a fixed
contraction factor α for any hypergraph instance regarding the number of pins. Optimally,
the contracted hypergraph should only contain about 1/α of the original number of pins.
Moreover, the reason to use the number of pins rather than the number of vertices or edges is
that hypergraphs with fewer nodes or edges can still be more difficult to deal with because of
higher average net sizes and therefore a higher number of pins. The outer loop repeatedly runs
the main part of the contraction algorithm (lines 4-15) until we reach the aimed contraction
factor of pins. However, if the contraction algorithm runs out of possible contraction partners
– i.e., we contract less than 1% of pins in one pass – the loop exits before accomplishing the
number of target pins. Also, we restrict the number of passes to a maximum of 20 passes.
The main part of the contraction algorithm ranges from line 4-15 where we iterate over all
unmatched vertices. Moreover, we calculate the prediction values R for each of these nodes u.
Thereby, we only use a constant-size and random subset of the neighbours of u. Additionally,
we only consider those neighbours that have not been part of a contraction in the respective
pass of the outer loop yet. Thereafter, we apply a penalisation function to avoid few heavy
nodes. Heavy vertices make it difficult for the initial partitioning to achieve balanced block
weights as well as for the refinement phase to move those to other blocks [2, 62]. Refer to
Ref. [2, 39, 42] for an overview of best practices in the coarsening phase. Following this, we
contract the node u with its neighbour v with which u has the highest likelihood of belonging
to the same block. However, this contraction only takes place if this prediction value exceeds
a given prediction threshold β. To be more specific, the prediction function calculates the
posterior probability P (y = 1 | fu,v) for a given feature vector fu,v. If that probability exceeds
the contraction threshold β – i.e., P (y = 1 | fu,v) ≥ β – we merge node v into node u as
previously described and remember the pair (u, v) for later uncontraction.
After preprocessing the hypergraph as shown, we use a hypergraph partitioner partχ to com-
pute a partition for the pruned hypergraph. Because of the rather generic design of the
meta-algorithm, the partitioning algorithm partχ as well as its configuration χ are quite in-
terchangeable which leaves room for optimisation.
We assume that the input hypergraph has unit weights for all nodes and edges since the
features introduced in Section 4.2 do not depend on the weight functions c and ω. However,
as mentioned in Section 2.1.2, contraction of nodes accumulates their weights introducing non-
unit weights. Therefore, the partitioning algorithm partχ needs to be capable of dealing with
weights. Also, it would be possible to add weights to the employed features without changing

31

4 Machine-Learning based Hypergraph Pruning for Partitioning

Algorithm 2: Meta-algorithm for hypergraph pruning for partitioning
Input: A hypergraph H = (V,E, c, ω) [weights are assumed to be unit weights], a hypergraph

partitioning algorithm partχ : H → Π with configuration χ, a feature extractor
feature : V × V → Rn, a prediction function pred: Rn → [0, 1], a prediction threshold
β, a contraction factor α, a weight penalisation function penalise, a refinement
algorithm refine(u, v), and a maximum count of contraction passes maxPass

1 P ← [] // Set of contracted nodes
2 pass← 0 // Current number of iterations
3 while currentNumPins > (1/α) initialNumPins and pass < maxPass do
4 foreach u ∈ V , u enabled and unmatched do
5 Choose R ⊆ { pred(feature(u, v)) | v ∈ Γ(u) , v unmatched } with |R| ∈ O(1) at

random
6 R← penalise(R) // Avoid contraction of nodes with high weight by penalising them
7 v ← argmaxR // Node with which u is most likely to be in the same block
8 p← maxR // Maximum prediction value
9 if v, p exist and p ≥ β then

10 Contract v into u // Disables node v and matches u with v in the current pass
11 P. append((u, v))
12 if currentNumPins ≤ (1/α) initialNumPins then
13 break // Exit loop if a sufficient amount of pins has already been contracted

14 if too few progress in the prior step then
15 break // Exit loop if there was too few progress this round
16 pass← pass+ 1
17 Π← partχ(H) // Partition contracted hypergraph; part could be a multi-level algorithm itself
18 foreach (u, v) ∈ P in reversed order do
19 Uncontract v from u
20 Π(u)← Π(u) ∪ {v} // Temporarily add node v to the same block as u
21 refine(u, v) // Refine the made uncontraction using a local search heuristic

Output: hypergraph partition Π

the algorithm at all. However, adding support for weights has been left open for future work.
Finally, we uncontract the contracted nodes again by initially assigning the block of the rep-
resentative to the contraction partner. This operation does not violate balance constraints of
the overall partitioning since weights are updated as described in Section 2.1.2. Additionally,
we apply a refinement algorithm during this last step. Refinement algorithms often use local
search heuristics to find local optima in the neighbourhoods of the contraction partners re-
garding the objective function f. Details on the specific algorithms used within the presented
approach are given in Section 5.1.4.

32

5 Evaluation

5. Evaluation
First, we present the experimental setup in Section 5.1 under which the experiments have
been conducted. Also, implementation details are given. The second part of this chapter in
Section 5.2 contains the results yielded from the experiments done within this work.

5.1. Experimental Setup

This section explains the decisions that have been made for the approach outlined in Sec-
tion 4.1 on a low level. After taking a look on the used data and the feature computation,
implementation details of both the model training and actual pruning algorithm are given.
All implementations in C++ have been compiled using the gcc C++ compiler in version 7.5.0
with the -O3 flag enabled. Moreover, we run all experiments on a machine with 4 Intel®

Xeon® Gold 6138 processors with 20 cores each that are clocked at 2 GHz and have 27.5 kiB
L1 cache per core, 1 MiB L2 cache per core as well as 27.5 MiB L3 cache shared among all
cores. The machine has a total of 754 GiB memory and runs Ubuntu 18.04.4 LTS.

5.1.1. Instances

The used hypergraph data can be divided into two disjoint sets of 100 hypergraph instances
each. The training set consists of the hypergraphs given in Appendix A.1, whereas the bench-
mark set is made up of the hypergraphs given in Appendix A.2. We show an overview of
the hypergraph classes in those sets in Table 1. The instances are accessible via the work of
Schlag [60]. Schlag has initially collected these instances which form a benchmark set of 488
hypergraphs in total from which the chosen 200 instances are derived. We chose the selected
instances by iteratively adding pairs of hypergraphs (one to each set) that have similar node
degrees and net sizes. This ensures that both sets contain similar instances regarding size
and structure. With more time, however, a more profound analysis could have been done on
whether the selected instances are representative of the original set of hypergraphs. Originally,

Class Training Set Benchmark Set
DAC2012 5 5
ISPD98 9 9

SAT14 – Primal 21 21
SAT14 – Dual 21 21
SAT14 – Literal 21 21

SPM 23 23
Σ 100 100

Table 1: Number of hypergraph instances per class.

the instances belonging to the DAC2012 class originate from the DAC 2012 Routability-Driven
Placement Contest [75], the class ISPD98 consists of hypergraphs from the ISPD98 Circuit
Benchmark Suite [3], the SAT14 instances are derived from the SAT competition in 2014 [7]
and the SPM class consists of instances from the Sparse Matrix Collection of the University
of Florida [14].

33

5 Evaluation

We represent boolean satisfiability formulas by interpreting variables of the SAT instance as
hyperedges and clauses as hypernodes (primal instances). However, the roles of hyperedges
and hypernodes can be swapped in the dual version of the SAT instances. There is also the
literal representation where we represent the literals rather than the variables as hypernodes
and clauses as hyperedges. Furthermore, we create sparse matrix instances by modelling
the dependencies in a matrix vector multiplication [73]. Thereby, rows are interpreted as
hypernodes and columns correspond to hyperedges. A non-zero entry in cell (i, j) means that
vertex i is part of hyperedge j.

5.1.2. Feature Computation

Partitioner Configuration. As mentioned earlier, the sample set Dχ generated by Algo-
rithm 1 and used for model training depends upon the used configuration χ of the partitioner
computing the partitions that provide the labels used in the learning process. In the context
of this work, χ consists of the parameters k, ε, f, and C. The parameter k denotes the number
of blocks used during partitioning which highly influences the trained model due to different
labelling, ε denotes the imbalance parameter, f the objective function used and C denotes a
set of other parameters that are irrelevant for this work but are needed by the partitioning
algorithm employed. All experiments done use the connectivity objective function f = fλ intro-
duced in Section 2.1.2. Also, we chose ε = 0.03 for all experiments because it is a default value
in literature [61]. However, the number of blocks k may vary, i.e., k ∈ {2, 4, 8, 16}. On the one
hand, we have restricted the amount of possible values of k to four since all steps in Fig. 3 –
including sample generation and model training – have to be performed for any additional k.
Running all steps for a given number of blocks k took about one to two weeks due to limited
resources. On the other hand, the goal of this work is to provide a general contraction algo-
rithm wherefore we used leastwise four different configurations. With the choice of different
configurations, it is possible to demonstrate that the accuracy of the predictions is inherent
to the chosen machine-learning model and does not depend upon the choice of k. With more
time, however, we would have also examined higher numbers of blocks in our experiments, e.g.
k = 64, k = 128 and k = 256. An overview of all configurations used is shown in Table 2. The

χ k ε f C
χ2 2 0.03 fλ km1_direct_kway_sea17.ini
χ4 4 0.03 fλ km1_direct_kway_sea17.ini
χ8 8 0.03 fλ km1_direct_kway_sea17.ini
χ16 16 0.03 fλ km1_direct_kway_sea17.ini

Table 2: Configurations used for training sample generation.

partitioner used in the training sample generation algorithm which is part in Algorithm 1 is
KaHyPar-CA [35]. KaHyPar-CA outsources its configuration C to configuration files. In
particular, we use the parameters given in km1_direct_kway_sea17.ini1 for all experiments.

Implementation Details. Feature computation has been implemented using C++ and the
hypergraph datastructures that are part of the KaHyPar project2. Those datastructures

1https://github.com/kahypar/kahypar/blob/1.2.0/config/km1_direct_kway_sea17.ini
2https://kahypar.org/

34

https://github.com/kahypar/kahypar/blob/1.2.0/config/km1_direct_kway_sea17.ini
https://kahypar.org/

5.1 Experimental Setup

are also described in Ref. [2, 61]. The feature computation itself is implemented sequentially.
However, computing features for different hypergraphs can be run in parallel providing a huge
speedup. In total, there are 200 hypergraphs times 4 different configurations resulting in 800
inputs that we have to process.

5.1.3. Model Training

Model Evaluation. The most simple measure for evaluating a model is the accuracy which
is defined by the number of right predictions divided by the total number of predictions made.
However, this metric provides few insight on performances per prediction class.
Training data once again consists of s samples in the form (fi, yi) for any i ∈ {1, ..., s}. The
class label ω ∈ {0, 1} predicted by the model for a given fi is denoted by ŷi. Table 3 contains
metrics that are useful for analysing the distributions of classes ω and made predictions.
Recall that ω = 0 denotes that two adjacent vertices are not part of the same block whereas
ω = 1 means the opposite. Additionally, based on these predictions ŷi, we can define posterior
probabilities that are useful for evaluation purposes. Table 4 shows these metrics. Especially

ŷi yi
ω = 0 P (ŷi = 0) P (yi = 0)
ω = 1 P (ŷi = 1) (*) P (yi = 1)

Table 3: Probabilities of classes as well as of the made predictions.

ŷi = yi ŷi yi
ω = 0 P (ŷi = yi | ŷi = 0) P (ŷi = yi | yi = 0)
ω = 1 P (ŷi = yi | ŷi = 1) (*) P (ŷi = yi | yi = 1)

Table 4: Posterior probabilities used for evaluation.

the probabilities marked with (*) are important to analyse and to optimise since the model
is not used to predict an exact decision boundary but rather to classify a large amount of
samples with ω = 1. We have already discussed this thought in Section 3.2. On the one hand,
it is important that P (ŷi = yi | ŷi = 1) is close to one. Otherwise, the pruning algorithm would
withhold node pairs from the actual hypergraph partitioning algorithm that may be part of a
cut net. On the other hand, P (ŷi = 1) should not decrease significantly while optimising the
first metric. Otherwise, the pruning may not contract a sufficient amount of nodes. This trade-
off between the classification accuracy for ω = 1 and the number of classifications regarding
ω = 1 may be tuned by adapting the prediction threshold.

Implementation Details. The presented machine-learning model has been implemented
in Python using the machine-learning framework Tensorflow3. The logistic regression
model as well as the principal component analysis was done within this framework. We
have trained four different models on the respective training sample sets, i.e., Dχ2 , Dχ4 , Dχ8 ,
and Dχ16 . Additionally, the trained models have been saved in a binary format provided by
the Tensorflow library. The serialised computation graphs also include the preprocess-
ing and scaling of the inputs (i.e., normalising the feature values), so that the application

3https://www.tensorflow.org/

35

https://www.tensorflow.org/

5 Evaluation

of the prediction model does not require additional input scaling or transformations. As de-
scribed in Section 4.4.1, the model M consists of several hyperparameters to optimise, i.e.,
β1, β2, λ, γ. For time reasons, the hyperparameters β1 and β2 of the employed loss optimi-
sation algorithm have been instantiated with β1 = 0.9 and β2 = 0.999 without optimising
them. Those values are the recommended numbers in the paper presenting the used optimiser
[46]. The remaining two parameters have been optimised on the validation sets. See Sec-
tion 4.4.6 for more information. Thereby, a grid-search on the following value ranges has been
done, λ ∈ {0.01, 0.001, 0.0001, 0.00001} and γ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Experiments have
shown that the maximum accuracy on the respective validation sets has been achieved with
λ = 0.0001 and γ = 0.75. However, the accuracies only differed by a single-digit percentage.
The final accuracies are shown in Section 5.2.1. A more fine-grained tuning of the hyperpa-
rameters has been left open for future work since the tuning process is rather time-expensive.

5.1.4. Hypergraph Pruning

Performance Profiles. In order to compare the performances of several algorithms in general,
we use performance profiles which have been first introduced by Dolan and Moré [17]. All
algorithms that are subject to examination are denoted by set P . It is possible that the same
algorithm is part of the set multiple times but with different configurations χ. Moreover, I
denotes the benchmark instances that are subject to partitioning. In total, there are |I| such
instances. With these sets in mind, it is possible to define performance ratios rp,i given by

rp,i := fλ(Πp,i)
min{fλ(Πq,i) | q ∈ P}

, (5.1)

for a particular algorithm p and problem instance i. Πp,i denotes the partition with which
partitioner p comes up with for hypergraph i. If the partitioners are compared regarding the
connectivity metric, the outputs of the connectivity objective function fλ(Π) are used. Else,
the objective function might be replaced by the metric of importance. The connectivity and
cut-net objective function have been introduced in Section 2.1.2. The performance profile
rp,i ≥ 1 indicates the factor of how much worse the results of partitioner p on instance i
are compared to the best solution for instance i by any partitioner. Furthermore, rp,i = 1 if
algorithm p performs the best on instance i. Performance profiles ρp(τ) can then be expressed
by

ρp(τ) := | {i ∈ I | rp,i ≤ τ} |
|I|

, (5.2)

with τ ≥ 1. ρp(1) is the fraction of instances for which algorithm p produces the best results.
Similarly, ρp(2) is the fraction of instances for which algorithm p is at most double as worse
as the best algorithm for each instance i. Because the algorithms in the comparison yield
results for every instance in the benchmark set, it is not necessary to deal with timeouts or
infeasibility in the context of performance profiles.
Because performance profiles ρp(τ) are quite right-skewed, we split the performance profile
plots given in Section 5.2.3 into three parts along the x-axis. On the one hand, values near to
one are of interest because it is useful to know what fraction of the input instances is solved
almost perfectly regarding the available solutions. On the other hand, it is useful to know
for which value of τ a majority of instances is better than the best solution times τ . To
achieve both, we split the x-axis into three parts to provide the best possible information on
the relative performances of the algorithms.

36

5.2 Experimental Results

Implementation details. The actual preprocessing algorithm described in Algorithm 2 has
been implemented in C++ using the Tensorflow C++ Api to load and apply the trained
model to make predictions. Similar to the training sample generation, we use the partitioner
KaHyPar-CA [35]. As a refinement algorithm, we use the k-way FM algorithm which is
also part of KaHyPar. Refer to Ref. [2, 35] for an overview of the employed local search
heuristic. Also, we use the configurations given in Table 2 once again in the contraction
algorithm. Naturally, we compare the partitions yielded by our pruning approach with the
results produced by KaHyPar-CA itself for different values of k. The comparison is done for
each configuration shown before. Section 5.2.3 contains the performance profile plots among
other statistics for a comparison of the two algorithms.

5.2. Experimental Results

This section presents the results of this work. First, we evaluate and analyse the trained mod-
els. Second, we compare the hypergraph pruning approach described before with KaHyPar-
CA.

5.2.1. Model Accuracies

As mentioned before, four different models have been trained that use one of the four sample
sets each (i.e., Dχ2 , Dχ4 , Dχ8 , and Dχ16). Table 5 shows an overview of all trained model
accuracies in column (1) as well as distributions of classes and predictions, and posterior
probabilities. As introduced in Section 5.1.3, the probability in column (2) and the posterior
in column (3) is subject to optimisation. The provided information also indicates a consistent

Config Sample P (ŷi = yi) (1) P (yi = 1) P (ŷi = yi | yi = 1) P (ŷi = yi | yi = 0) P (ŷi = 1) (2) P (ŷi = yi | ŷi = 1) (3) P (ŷi = yi | ŷi = 0)
χ2 Valid. 0.7419 0.9872 0.7408 0.8287 0.7335 0.9970 0.0397

Test 0.7413 0.9872 0.7401 0.8293 0.7329 0.9970 0.0396
χ4 Valid. 0.7320 0.9724 0.7291 0.8346 0.7136 0.9936 0.0804

Test 0.7305 0.9724 0.7275 0.8384 0.7119 0.9937 0.0802
χ8 Valid. 0.7338 0.9536 0.7300 0.8135 0.7048 0.9877 0.1277

Test 0.7333 0.9537 0.7294 0.8145 0.7042 0.9878 0.1276
χ16 Valid. 0.7332 0.9300 0.7281 0.8009 0.6911 0.9798 0.1814

Test 0.7341 0.9299 0.7291 0.8002 0.6920 0.9798 0.1821

Table 5: Accuracies of the trained model on both the validation and test set.

accuracy between 73% and 74% among all configurations used. Optimising this accuracy as
well as adding further configurations is left open for future work due to the time-expensive
sample generation and model training process.

5.2.2. Model Analysis

This section analyses the trained models which mainly consist of the trained weights θ. Table 6
qualitatively shows how each of the 25 features is involved in the final model. Since all feature
spaces have been transformed to zero mean and unit variance, i.e., N (0, 1), we can directly
compare the trained weights with each other. The symbol ++ represents weights greater than
1.0, + weights between 0.1 and 1.0, ◦ weights between −0.1 and 0.1, − weights between −1.0
and −0.1, and −− weights less than −1.0. Keep in mind that the class label ω = 1 means
that two nodes belong to the same block of a partition and ω = 0 the opposite. If a weight

37

5 Evaluation

is negative for example, lower values of the respective feature mean that the likelihood of the
two nodes to end up in the same block is increased (since the employed sigmoid kernel is a
continuous and strictly monotonically increasing function). Overall, the values of the different
configurations are quite consistent among each other. The information that is provided in
Table 6 is summarised in the following paragraphs.

Features Configurations
χ2 χ4 χ8 χ16

F01 −− −− −− −−
F02 − − − −
F03 − ◦ + +
F04 −− −− −− −−
F05 −− −− −− −−
F06 −− −− −− −−
F07 − − −− −−
F08 − − − −
F09 − − − −−
F10 ◦ − −− −−
F11 ◦ − − −
F12 −− −− −− −−
F13 ◦ + + +
F14 + + + +
F15 − − − −
F16 −− − ◦ +
F17 + + ++ ++
F18 + + + +
F19 + + ◦ −
F20 ◦ + ++ ++
F21 + + + +
F22 ++ ++ ++ ++
F23 − ◦ + +
F24 ++ ++ + −
F25 −− −− −− −−

Table 6: Qualitative representation of the trained model weights. ++ represents weights
greater than 1.0, + weights between 0.1 and 1.0, ◦ weights between −0.1 and 0.1,
− weights between −1.0 and −0.1, and −− weights less than −1.0.

First, almost all of the global features are negatively weighted (i.e., F01–F02, F04–F11) which
is quite intuitive for the following reason. If a hypergraph is larger or denser in respect of almost
any global metric considered (e.g., average edge sizes, network ratio, count of hypernodes, ...),
the threshold for the local features to indicate that nodes belong to the same block of a partition
is increased. This means that the values of the local features – e.g., average hypernode degree
of common neighbours – must be higher to indicate the same as in a less dense hypergraph.
An exception to this might be the count of pins p (F03). The higher the number of blocks
k is, the more positive is the weighting of it in the resulting model. This can be ascribed to
the fact that there are more pair of pins that do not end up in the same block of a partition

38

5.2 Experimental Results

with increasing k. Compare for example the second numerical column in Table 5 (amount of
one-labelled samples).
Second, there are either weights that are consistently negative / positive or weights that
change with different partition sizes k among the local features. The first of these categories
comprises the features F12–F15, F17–F18, F21–F22, and F25 whereas the second category
consists of F16, F19–F20, and F23–F24. Because of the large number of features, we only
describe one feature per category. Jaccard indices (F14) are consistently positively weighted
among different k. If two nodes share a large amount of their neighbourhood, it is also very
likely that they belong to the same block of a partition. By contrast, the weighting of the
cosine similarity differs with different partition sizes k. For k = 2, the cosine similarity is
strongly weighted negative whereas for k = 16 it is positively weighted. This may be for
the fact that the denominator of the cosine similarity – compare for example Equation 4.3
– contains the geometric mean of the considered node degrees which is a measure of central
tendency. The larger the number of blocks k is, the larger may also be the average degree of
nodes that still belong to different blocks. Therefore, the feature values need to be weighted
more strongly for increasing partition sizes.

Config Most Important Features (+/–)
χ2 F22 1.928 F06 −3.780

F24 1.638 F05 −2.466
F21 0.895 F01 −2.378

χ4 F22 2.069 F06 −4.452
F24 1.182 F05 −2.498
F17 0.926 F25 −2.434

χ8 F22 1.920 F06 −4.215
F20 1.138 F25 −2.514
F17 1.077 F05 −2.228

χ16 F22 1.777 F06 −3.942
F20 1.435 F25 −2.573
F17 1.181 F05 −1.936

Table 7: Most important features that go into the trained models both on the positive and
negative side.

Table 7 shows the three features that are weighted the most positive (left column) as well as
the three features that are weighted the most negative (right column) for each configuration
χ. There are metrics that are present in all different configurations (i.e., F05, F06, and F22)
while there are also metrics whose importance changes with a different number of blocks (i.e.,
F01, F17, F20, F21, F24, and F25). The most expressive global feature is by far the minimum
hypernode degree (F06) followed by the standard deviation of hypernode degrees (F05). Both
metrics are well suited for distinguishing hypergraph classes and fitting the regression model
even better on different instances. While the standard deviation of node degrees ranges from
two to three for ISPD98 instances, the SAT14 primal instances have standard deviations above
a value of six; compare Appendix A.1 as well as A.2 for further details. On the local features
side, the closeness metric of the HGCEP algorithm [68] (F22) is consistently at the top of
the importance ranking among all different configurations. Also, the Strawman connectivity
metric [31] (F24) seems to be important especially for small partition sizes, i.e., k = 2 or

39

5 Evaluation

k = 4. Moreover, the χ2 metric of the degrees of the neighbourhood of the considered pair
of nodes (F21) has also importance in the decision making process. Because it is a metric
of statistical dispersion, it is detached from scaling issues that come with metrics of central
tendency. Also, it incorporates both global and local information.

5.2.3. Hypergraph Pruning

In this section, we evaluate the hypergraph pruning algorithm presented in Section 4.5 con-
cerning both solution quality and time. For numerical stability, we have run the experiments
with different random seeds to maintain reproducibility and eliminate bias in the selection of
random values within the used algorithms. We combine results yielded by different seeds by
using the arithmetic mean. However, when aggregating results further (e.g., to determine the
average performance among all instances), we use the geometric mean to give each instance a
comparable influence.

β Hypernodes Pins Hyperedges Avg. Improvement relative
to KaHyPar-CA

0.0 0.737 0.495 0.304 1.096
0.1 0.734 0.493 0.307 1.095
0.2 0.700 0.482 0.312 1.101
0.3 0.564 0.401 0.252 1.075
0.4 0.421 0.311 0.184 1.055
0.5 0.310 0.244 0.146 1.047
0.6 0.224 0.188 0.127 1.056
0.7 0.155 0.145 0.100 1.058
0.8 0.085 0.095 0.068 1.057
0.9 0.028 0.067 0.047 0.997
1.0 0.000 0.000 0.000 1.003

Table 8: Contracted amount of hypernodes, pins and hyperedges for different prediction
thresholds β. The last column shows the geometric mean of the improvement rela-
tive to KaHyPar-CA. Due to limited resources and time, the contraction algorithm
was only run on configuration χ8.

Contraction Ratio. Table 8 shows the amounts of contracted hypernodes, pins and hyper-
edges for different prediction thresholds β. Our approach aims for a contraction ratio of
1/α = 0.5. However, the contraction may exit before if we contract less than 1% of pins
in the last iteration of the contraction algorithm. The last column shows the relative per-
formances to the KaHyPar-CA partitioner regarding the connectivity metric fλ. A value
above one means that it performs worse than the original algorithm whereas a value below
one means the opposite. A prediction threshold of β = 1.0 indicates that no contractions are
made by our approach which corresponds to a normal execution of KaHyPar-CA (therefore
the relative performance nearly equal to one). In contrast to that, a prediction threshold of
β = 0.0 indicates that no filtering takes places, i.e., we contract each node with its highest
rated neighbour even if it is unlikely that those nodes belong to the same block of a partition.
The best improvement relative to KaHyPar-CA is achieved with a prediction threshold of

40

5.2 Experimental Results

Class Hypernodes Pins Hyperedges Avg. Improvement relative
to KaHyPar-CA

DAC2012 0.126 0.114 0.086 1.098
ISPD98 0.134 0.080 0.088 0.997

SAT14 – Primal 0.184 0.194 0.185 1.111
SAT14 – Dual 0.588 0.425 0.164 1.077
SAT14 – Literal 0.315 0.207 0.167 1.048

SPM 0.316 0.281 0.093 1.014

Table 9: Contracted amount of hypernodes, pins and hyperedges for β = 0.5. The last
column shows the geometric mean of the improvement relative to KaHyPar-CA.
The numbers shown are aggregated from all different configurations χ.

β = 0.9. However, we have selected the threshold β = 0.5 since the amount of contractions
performed for β = 0.9 is too little. Apart from β = 0.9 or β = 1.0, the prediction threshold
β = 0.5 yields the best relative performances while contracting a not inconsiderable amount of
pins. This can be ascribed to the fact that the model training also used a decision boundary
of 0.5 to fit the predictions to the provided labels from the sample data. Furthermore, a
prediction threshold of β = 0.5 approximately contracts 31% of the hypernodes, 24% of the
pins and 15% of the hyperedges in the initial hypergraph on average. To be more precise,
Table 9 shows the amount of contractions per hypergraph class with its respective relative
performances only for a prediction threshold of β = 0.5. Our approach is able to slightly
improve the average relative performance on ISPD98 instances. Also, the performance on
SPM instances is only slightly worse than on KaHyPar-CA. However, SAT14 primal and
DAC2012 instance perform poorly in relation to KaHyPar-CA.

Quality. Fig. 4 shows the performance profile plot for all employed configurations χ aggre-
gated. Unfortunately, the presented approach was not able to outperform the original parti-
tioner KaHyPar-CA. However, our approach is only slightly worse. A wilcoxon signed-rank
test [25] between the results of KaHyPar-CA and our approach yields a p-value of 0.000 157.
Because this value is less than 0.05, the difference between the two algorithms is not statis-
tically significant. There are also many possible optimisations that can still be made with
which our approach might produce better results (see Section 6.1). The main shortcoming of
the presented approach is, to our beliefs, the lack of node and edge weighting in the calculated
features, since the first contraction introduces weights in a unit-weighted hypergraph. Refer
to Appendix A.8 for performance profile plots for each configuration χ on its own.

Time. Fig. 5 shows two runtime plots comparing the running times of the proposed ap-
proach as well as of KaHyPar-CA. Thereby, the left plot shows the total running times
for each instance and configuration aggregated. The right plot compares the running times
of the partitioning phase in our approach (i.e., execution of KaHyPar-CA on the coarse
hypergraph) and the running times of KaHyPar-CA itself. Our approach is much slower
because rather than computing a single rating function, we compute 25 features for all neigh-
bours v ∈ Γ(u). Also, the computation of Γ(u) ∩ Γ(v) is very expensive because it requires
O(max(|Γ(u) |, |Γ(v) |)) time per neighbour. The heavy-edge metric employed in KaHyPar-
CA only requires constant time per neighbour. However, if only considering the running

41

5 Evaluation

times of the actual partitioning phases (right plot), both partitioning phases require roughly
the same amount of time. Moreover, Fig. 6 shows that our contractions accelerate almost half
of the partitioned instances among all classes but also slow down the other half.
Fig. 7 further compares the running times of KaHyPar-CA and the partitioning phase in our
approach for each hypergraph class on its own. On average, partitioning DAC2012 and SAT14
literal instances is faster after our contraction algorithm, SAT14 primal and SPM instances
perform roughly similar, and SAT14 dual and ISPD98 instances are slightly slower.

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2
Quality relative to best

KaHyPar-CA ML-prepro-0.5

10 100 7

Figure 4: Aggregated performance profile plot for all configurations χ.

42

5.2 Experimental Results

10.69 3911.210100101102
103
104

105

106

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(a) Comparison of total running times of
KaHyPar-CA and our approach.

10.69 11.380

100
101

102

103

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(b) Running times of KaHyPar-CA and
the partitioning phase in our approach.

Figure 5: Comparison of running times with the KaHyPar-CA partitioner.

2−3

2−2

2−1

1

21

22

0 100 200 300
Instances

R
el
.
tim

e
to

K
aH

yP
ar
-C

A

ML-prepro-0.5

Figure 6: Running times of the partitioning phase in our approach (i.e., execution of
KaHyPar-CA on the coarse hypergraph) relative to KaHyPar-CA.

43

5 Evaluation

261.66 106.310

100

101

102

103

KaHyPa
r-CA

ML-prep
ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(a) DAC2012 instances.

8.86 10.930

100

101

102

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]
(b) ISPD98 instances.

9.58 10.340

100
101

102

103

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(c) SAT14 primal instances.

13.48 17.870

100
101

102

103

KaHyPa
r-CA

ML-prep
ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(d) SAT14 dual instances.

15.19 12.750

100
101

102

103

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(e) SAT14 literal instances.

5.94 6.780

100
101

102

103

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(f) SPM instances.

Figure 7: Comparison of running times of KaHyPar-CA and the partitioning phase in our
approach for each hypergraph class.

44

6 Conclusion

6. Conclusion
In this work, we have presented a machine-learning based approach with which interesting
insights concerning coarsening are connected. The approach consists of a three-fold process. In
a first step, we have calculated feature vectors for certain pairs of adjacent nodes. The metrics
used in the feature vector are either common hypergraph metrics, statistical measures or
coarsening rating functions that are already used by other partitioners (refer back to Section 3).
Additionally, we have used a high-quality partitioner to label each feature vector whether a
particular pair of nodes belongs to the same block of a partition or not.
In a second step, this information is then used to train a logistic regression model by using
advanced techniques such as a principal component analysis or Elastic-Net penalisation for
example. Because we transform the feature spaces to zero mean and unit variance normal
distributions, we can directly compare the trained weights in order to make statements about
their performance. Especially, rating functions such as the closeness metric of the HGCEP
algorithm [68] or the Strawman algorithm [31] have been proven to contribute a significant
amount to the predictions made.
Finally, we propose a coarsening algorithm that uses the previously trained model to make
predictions about the likelihood of belonging to the same block in a partition. On average,
the performance of our approach is slightly worse than the performance of KaHyPar-CA.
However, this difference is not statistically significant. Regarding running time, the execution
of the partitioner on the coarse hypergraphs is on average quite similar to the execution of
KaHyPar-CA on the original hypergraphs. We are even able to speed up the partitioning
phase on some hypergraph classes. The calculation of the feature vectors, however, makes the
approach infeasible. Nevertheless, an analysis of the trained model reveals some interesting
insights on the importance of different rating functions used in the hypergraph partitioning
community for coarsening.

6.1. Future Work
As already mentioned throughout this work, there are many optimisations possible within
the presented approach. Starting with the sample generation process, the labels for the cal-
culated feature vectors have been determined by the partitioner KaHyPar-CA (refer to
Section 5.1.2). Although this partitioner is known for producing high quality partitions [2],
the model accuracy might be improved by using solutions closer to the optimum. However,
partitioners that do so are more time-expensive. Also, the selection of pairs of adjacent hyper-
nodes (u, v) can be optimised to achieve more balanced class sizes while keeping the samples
representative in respect of all possible pairs.
Concerning the employed machine-learning model, there are possible optimisations referring
to the model architecture as well as the hyperparameters used. We used logistic regression as
an underlying model. However, it might be that other approaches produce better accuracies
because they fit better to the underlying sample data structure. Possible alternatives that
we thought of are random forests [71], a k-nearest neighbours approach [19] or support vector
machines [63, 70]. Some unoptimised tests in the beginning of this work, however, lead to
the selection of a logistic regression model but nevertheless it might be that other approaches
perform better. Moreover, a logistic regression model also has the advantage that weights are
easily interpretable in contrast to the numerous boosted trees in a random forest approach for

45

6 Conclusion

example or even more complicated architectures. Within the employed model, there is also
room for optimisation. The four hyperparameters used – i.e., β1, β2, λ, and γ – can be tuned
more fine-grained. As mentioned in Section 4.4.7, a grid-search with more possible values can
be done. This endeavour, however, was too time-expensive to be done within this work.
Furthermore, our presented contraction algorithm performs poorly on some of the hypergraph
classes whereas it yields acceptable results on other classes. A more detailed analysis of the
performance on different hypergraph instances may reveal further insights and shortcomings
of our approach. We also thought of reducing the number of features employed to improve the
computation time of the feature vector calculations. Apart from that, the main shortcoming of
the presented approach is, to our beliefs, the lack of node and edge weighting in the calculated
features, since the first contraction introduces weights in a unit-weighted hypergraph. The
heavy-edge metric employed in KaHyPar-CA for example incorporates hyperedge weights
to make contraction decisions.

46

References

References

[1] L. A. Adamic and E. Adar. Friends and Neighbors on the Web. Soc. Networks, 25(3):211–
230, 2003.

[2] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a direct k-way Hyper-
graph Partitioning Algorithm. In Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2017, pages 28–42. SIAM, 2017.

[3] C. J. Alpert. The ISPD98 Circuit Benchmark Suite. In Proceedings of the 1998 Interna-
tional Symposium on Physical Design, ISPD 1998, pages 80–85. ACM, 1998.

[4] C. J. Alpert, J. Huang, and A. B. Kahng. Multilevel Circuit Partitioning. IEEE Trans.
on CAD of Integrated Circuits and Systems, 17(8):655–667, 1998.

[5] R. Andre, S. Schlag, and C. Schulz. Memetic Multilevel Hypergraph Partitioning. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018,
pages 347–354. ACM, 2018.

[6] C. Aykanat, B. B. Cambazoglu, and B. Ucar. Multi-level direct k-way Hypergraph Par-
titioning with Multiple Constraints and Fixed Vertices. J. Parallel Distributed Comput.,
68(5):609–625, 2008.

[7] A. Belov, D. Diepold, M. Heule, and M. Järvisalo. The SAT Competition 2014. 2014.
[8] G. E. P. Box and D. R. Cox. An Analysis of Transformations. Journal of the Royal

Statistical Society. Series B (Methodological), 26:211–252, 1964.
[9] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph

Partitioning. In Algorithm Engineering – Selected Results and Surveys, pages 117–158.
2016.

[10] Ü. V. Catalyürek and C. Aykanat. PaToH: Partitioning Tool for Hypergraphs. Technical
report, The Ohio State University, 1999.

[11] Ü. V. Catalyürek, M. Deveci, K. Kaya, and B. Ucar. UMPa: A Multi-objective, Multi-
level Partitioner for Communication Minimization. In Graph Partitioning and Graph
Clustering, 10th DIMACS Implementation Challenge Workshop, volume 588 of Contem-
porary Mathematics, pages 53–66. American Mathematical Society, 2012.

[12] J. Cong and J. R. Shinnerl. Multilevel Optimization in VLSICAD. Kluwer Academic
Publishers, 2003.

[13] R. B. D’Agostino. Transformation to Normality of the Null Distribution of g1. Biometrika,
57:679–681, 1970.

[14] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Trans.
Math. Softw., 38(1):1:1–1:25, 2011.

[15] K. de Jong. Evolutionary Computation: a Unified Approach. In Genetic and Evolutionary
Computation Conference, GECCO 2020, pages 327–342. ACM, 2020.

[16] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and Ü. V. Catalyürek.
Parallel Hypergraph Partitioning for Scientific Computing. In 20th International Parallel
and Distributed Processing Symposium, IPDPS 2006. IEEE, 2006.

[17] E. D. Dolan and J. J. Moré. Benchmarking Optimization Software with Performance
Profiles. Math. Program., 91(2):201–213, 2002.

47

References

[18] V. Durairaj and P. Kalla. Guiding CNF-SAT Search via Efficient Constraint Partitioning.
In 2004 International Conference on Computer-Aided Design, ICCAD 2004, pages 498–
501. IEEE Computer Society / ACM, 2004.

[19] R. Fathi, A. R. Molla, and G. Pandurangan. Efficient Distributed Algorithms for the
k-Nearest Neighbors Problem. In 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2020, pages 527–529. ACM, 2020.

[20] A. C. Faul. A Concise Introduction to Machine Learning. Machine Learning and Pattern
Recognition. Chapman and Hall, 2020.

[21] A. E. Feldmann. Fast Balanced Partitioning is hard even on Grids and Trees. In Mathe-
matical Foundations of Computer Science 2012 – 37th International Symposium, MFCS
2012, volume 7464 of Lecture Notes in Computer Science, pages 372–382. Springer, 2012.

[22] C. M. Fiduccia and R. M. Mattheyses. A Linear-time Heuristic for Improving Network
Partitions. In Proceedings of the 19th Design Automation Conference, DAC 1982, pages
175–181. ACM/IEEE, 1982.

[23] J. Garbers, H. J. Prömel, and A. Steger. Finding Clusters in VLSI Circuits. In IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1990, pages 520–523. IEEE
Computer Society, 1990.

[24] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some Simplified NP-Complete Graph
Problems. Theor. Comput. Sci., 1(3):237–267, 1976.

[25] E. A. Gehan. A Generalized Wilcoxon Test for Comparing Arbitrarily Singly-Censored
Samples. Biometrika, 52(1–2):203–224, June 1965.

[26] B. Ghojogh and M. Crowley. The Theory Behind Overfitting, Cross Validation, Regular-
ization, Bagging, and Boosting: Tutorial. CoRR, abs/1905.12787, 2019.

[27] M. K. Goldberg and M. Burstein. Heuristic Improvement Technique for Bisection of VLSI
Networks. In International Conference on Computer-Aided Design (ICCAD), pages 122–
125, 1983.

[28] L. Gottesbüren, M. Hamann, S. Schlag, and D. Wagner. Advanced Flow-Based Multilevel
Hypergraph Partitioning. In 18th International Symposium on Experimental Algorithms,
SEA 2020, volume 160 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[29] S. Hauck and G. Borriello. An Evaluation of Bipartitioning Techniques. In 16th Con-
ference on Advanced Research in VLSI, ARVLSI 1995, pages 383–403. IEEE Computer
Society, 1995.

[30] S. Hauck and G. Borriello. An Evaluation of Bipartitioning Techniques. IEEE Trans. on
CAD of Integrated Circuits and Systems, 16(8):849–866, 1997.

[31] S. A. Hauck. Multi-FPGA Systems. PhD thesis, 1995.
[32] T. Hegazy. Optimization of Resource Allocation and Leveling Using Genetic Algorithms.

Journal of Construction Engineering and Management, 125(3):167–175, June 1999.
[33] M. Herty and A. Klar. Modeling, Simulation, and Optimization of Traffic Flow Networks.

SIAM J. Scientific Computing, 25(3):1066–1087, 2003.
[34] T. Heuer, P. Sanders, and S. Schlag. Network Flow-Based Refinement for Multilevel

Hypergraph Partitioning. ACM J. Exp. Algorithmics, 24(1):2.3:1–2.3:36, 2019.
[35] T. Heuer and S. Schlag. Improving Coarsening Schemes for Hypergraph Partitioning

by Exploiting Community Structure. In 16th International Symposium on Experimental

48

References

Algorithms, SEA 2017, volume 75 of LIPIcs, pages 21:1–21:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[36] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev, A. Shalita, Y. Akhremtsev, and A. Presta.
Social Hash Partitioner: A Scalable Distributed Hypergraph Partitioner. Proc. VLDB
Endow., 10(11):1418–1429, 2017.

[37] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Parti-
tioning: Application in VLSI Domain. In Proceedings of the 34st Conference on Design
Automation, 1997, pages 526–529. ACM Press, 1997.

[38] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Partitioning:
Application in VLSI Domain. Technical report, University of Minnesota, 1997.

[39] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Partitioning:
Applications in VLSI Domain. IEEE Trans. Very Large Scale Integr. Syst., 7(1):69–79,
1999.

[40] G. Karypis, R. Aggarwal, V. Kurnar, and S. Shekhar. Multilevel Hypergraph Partition:
Applications in VLSI Design. January 1997.

[41] G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning. Technical report,
University of Minnesota, 1998.

[42] G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning. In Proceedings of
the 36th Conference on Design Automation, 1999, pages 343–348. ACM Press, 1999.

[43] G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning. VLSI Design,
2000(3):285–300, 2000.

[44] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
Bell Syst. Tech. J., 49(2):291–307, 1970.

[45] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning Combinatorial Opti-
mization Algorithms over Graphs. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, pages 6348–6358,
2017.

[46] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

[47] J. Lauri, S. Dutta, M. Grassia, and D. Ajwani. Learning fine-grained Search Space
Pruning and Heuristics for Combinatorial Optimization. CoRR, abs/2001.01230, 2020.

[48] P. Liashchynskyi and P. Liashchynskyi. Grid Search, Random Search, Genetic Algorithm:
A Big Comparison for NAS. CoRR, abs/1912.06059, 2019.

[49] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. K. Singh. Learning
Heuristics over Large Graphs via Deep Reinforcement Learning. CoRR, abs/1903.03332,
2019.

[50] T. N.Bui, C. Heigham, C. Jones, and F. T. Leighton. Improving the Performance of the
Kernighan-Lin and Simulated Annealing Graph Bisection Algorithms. In Proceedings of
the 26th ACM/IEEE Design Automation Conference, 1989, pages 775–778. ACM Press,
1989.

[51] M. E. J. Newman and M. Girvan. Finding and Evaluating Community Structure in
Networks. Physical Review E, February 2004.

[52] E. S. Pearson. Note on Tests for Normality. Biometrika, 22:423–424, 1931.

49

References

[53] M. Popp, S. Schlag, C. Schulz, and D. Seemaier. Multilevel Acyclic Hypergraph Parti-
tioning. CoRR, abs/2002.02962, 2020.

[54] M. Probst, F. Rothlauf, and J. Grahl. Scalability of using Restricted Boltzmann Machines
for Combinatorial Optimization. Eur. J. Oper. Res., 256(2):368–383, 2017.

[55] T. R. C. Read and N. A. C. Cressie. Goodness-of-fit Statistics for Discrete Multivariate
Data. Springer Series in Statistics, 1988.

[56] T. R. C. Read and N. A. C. Cressie. Pearson’s χ2 and the Likelihood Ratio Statistic G2:
a Comparative Review. International Statistical Review, 57(1):19–43, 1989.

[57] J. Rotemberg and M. Woodford. An Optimization-based Econometric Framework for the
Evaluation of Monetary Policy. NBER Macroeconomics Annual, 12:297–346, 1997.

[58] K. Roy and C. Sechen. A Timing Driven N-Way Chip and Multi-Chip Partitioner. In
International Conference on Computer-Aided Design (ICCAD), pages 240–247, 1993.

[59] L. A. Sanchis. Multiple-Way Network Partitioning. IEEE Trans. Computers, 38(1):62–81,
1989.

[60] S. Schlag. Benchmark Sets used in the Dissertation of Sebastian Schlag. 2019.
[61] S. Schlag. High-Quality Hypergraph Partitioning. PhD thesis, Karlsruhe Institute of

Technology, Germany, 2020.
[62] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way Hyper-

graph Partitioning via n-Level Recursive Bisection. In Proceedings of the Eighteenth Work-
shop on Algorithm Engineering and Experiments, ALENEX 2016, pages 53–67. SIAM,
2016.

[63] S. Schlag, M. Schmitt, and C. Schulz. Faster Support Vector Machines. In Proceedings of
the Twenty-First Workshop on Algorithm Engineering and Experiments, ALENEX 2019,
pages 199–210. SIAM, 2019.

[64] S. Schlag, C. Schulz, D. Seemaier, and D. Strash. Scalable Edge Partitioning. In Proceed-
ings of the Twenty-First Workshop on Algorithm Engineering and Experiments, ALENEX
2019, pages 211–225. SIAM, 2019.

[65] D. M. Schuler and E. G. Ulrich. Clustering and Linear Placement. In Proceedings of the
9th Design Automation Workshop, DAC 1972, pages 50–56. ACM, 1972.

[66] C. Schulz and D. Strash. Graph Partitioning: Formulations and Applications to Big
Data. In Encyclopedia of Big Data Technologies. Springer, 2019.

[67] D. G. Schweikert and B. W. Kernighan. A proper Model for the Partitioning of Electrical
Circuits. In Proceedings of the 9th Design Automation Workshop, DAC 1972, pages 57–62.
ACM, 1972.

[68] H. Shin and C. Kim. A Simple yet Effective Technique for Partitioning. IEEE Trans.
Very Large Scale Integr. Syst., 1(3):380–386, 1993.

[69] H. Spieker and A. Gotlieb. Learning Objective Boundaries for Constraint Optimization
Problems. CoRR, abs/2006.11560, 2020.

[70] A. Tharwat. Behavioral Analysis of Support Vector Machine Classifier with Gaussian
Kernel and Imbalanced Data. CoRR, abs/2007.05042, 2020.

[71] S. Theodoridis. Machine learning: a Bayesian and Optimization Perspective, volume 2.
Academic Press, London, 2020.

50

References

[72] A. Trifunovic and W. J. Knottenbelt. Parallel Multilevel Algorithms for Hypergraph
Partitioning. J. Parallel Distributed Comput., 68(5):563–581, 2008.

[73] B. Ucar and C. Aykanat. Revisiting Hypergraph Models for Sparse Matrix Partitioning.
SIAM Review, 49(4):595–603, 2007.

[74] B. Vastenhouw and R. H. Bisseling. A Two-Dimensional Data Distribution Method for
Parallel Sparse Matrix-Vector Multiplication. SIAM Review, 47(1):67–95, 2005.

[75] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li, and Y. Wei. The DAC 2012 Routability-
driven Placement Contest and Benchmark Suite. In The 49th Annual Design Automation
Conference 2012, DAC 2012, pages 774–782. ACM, 2012.

[76] Y. Xu and G. Tan. An Offline Road Network Partitioning Solution in Distributed Trans-
portation Simulation. In 16th IEEE/ACM International Symposium on Distributed Simu-
lation and Real Time Applications, DS-RT 2012, pages 210–217. IEEE Computer Society,
2012.

[77] W. Yang, G. Wang, Md. Z. A. Bhuiyan, and K. K. R. Choo. Hypergraph Partitioning
for Social Networks based on Information Entropy Modularity. J. Netw. Comput. Appl.,
86:59–71, 2017.

51

A Appendix

A. Appendix
This section contains detailed information on the used hypergraphs and benchmarking data
as well as information on the model training and feature selection process.

A.1. Hypergraph Training Set

Overview of all hypergraph instances used for sample generation for model training. deg(V)
denotes the average hypernode degrees and σ(deg(V)) the standard deviations of node degrees.
Similarly, |e| denotes the average net sizes and σ(|e|) the standard deviation of net sizes.

Type Hypergraph n m p deg(V) σ(deg(V)) |e| σ(|e|)
DAC12 superblue14 630 802 619 815 2 048 903 3.248 4.659 3.306 16.171

superblue19 522 482 511 685 1 713 796 3.280 5.917 3.349 27.175
superblue3 917 944 898 001 3 109 446 3.387 5.243 3.463 15.285
superblue6 1 011 662 1 006 629 3 387 521 3.348 4.062 3.365 14.092
superblue9 844 332 833 808 2 898 403 3.433 4.748 3.476 23.529

ISPD98 ibm04 27 507 31 970 105 859 3.848 4.654 3.311 2.923
ibm05 29 347 28 446 126 308 4.304 2.354 4.440 4.291
ibm06 32 498 34 826 128 182 3.944 1.842 3.681 3.278
ibm08 51 309 50 513 204 890 3.993 6.180 4.056 5.008
ibm10 69 429 75 196 297 567 4.286 3.218 3.957 3.560
ibm12 71 076 77 240 317 760 4.471 4.677 4.114 3.719
ibm14 147 605 152 772 546 816 3.705 3.182 3.579 2.943
ibm16 183 484 190 048 778 823 4.245 2.769 4.098 3.614
ibm18 210 613 201 920 819 697 3.892 1.903 4.060 3.963

Primal 6s133 48 215 140 968 328 924 6.822 16.322 2.333 0.471
6s153 85 646 245 440 572 692 6.687 11.635 2.333 0.471
6s184 33 365 97 516 227 536 6.820 16.907 2.333 0.471
6s9 34 317 100 384 234 228 6.825 16.825 2.333 0.471
aaai10-planning-ipc5-pathways-17-
step21

53 919 308 235 690 466 12.806 10.087 2.240 1.884

ACG-20-5p0 324 716 1 390 931 3 269 132 10.068 8.767 2.350 0.923
ACG-20-5p1 331 196 1 416 850 3 333 531 10.065 8.758 2.353 0.917
AProVE07-27 7729 29 194 77 124 9.979 38.729 2.642 1.429
atco-enc1-opt2-05-4 14 636 386 163 1 652 800 112.927 248.398 4.280 1.364
atco-enc1-opt2-10-16 9643 152 744 641 139 66.488 142.597 4.197 1.582
atco-enc2-opt1-05-21 56 533 526 872 2 097 393 37.100 139.375 3.981 1.538
atco-enc2-opt1-15-100 58 752 580 963 2 227 755 37.918 134.900 3.835 1.534
bob12s02 26 294 77 920 181 812 6.915 8.104 2.333 0.471
countbitssrl032 18 607 55 724 130 020 6.988 10.435 2.333 0.471
dated-10-11-u 141 860 629 461 1 429 872 10.080 4.955 2.272 0.935
dated-10-17-u 229 544 1 070 757 2 471 122 10.765 6.790 2.308 0.920
gss-19-s100 31 435 94 548 222 806 7.088 6.516 2.357 0.480
hwmcc10-timeframe-expansion-k45-
pdtvisns3p02-tseitin

163 622 488 120 1 138 944 6.961 15.164 2.333 0.471

itox-vc1130 152 256 441 729 1 143 974 7.513 47.981 2.590 0.537
manol-pipe-c8nidw 269 048 799 867 1 866 355 6.937 16.726 2.333 0.471
manol-pipe-g10bid-i 266 405 792 175 1 848 407 6.938 21.682 2.333 0.471

Dual 6s133 140 968 48 215 328 924 2.333 0.471 6.822 16.322
6s153 245 440 85 646 572 692 2.333 0.471 6.687 11.635
6s184 97 516 33 365 227 536 2.333 0.471 6.820 16.907
6s9 100 384 34 317 234 228 2.333 0.471 6.825 16.825
aaai10-planning-ipc5-pathways-17-
step21

308 235 53 919 690 466 2.240 1.884 12.806 10.087

ACG-20-5p0 1 390 931 324 716 3 269 132 2.350 0.923 10.068 8.767
ACG-20-5p1 1 416 850 331 196 3 333 531 2.353 0.917 10.065 8.758
AProVE07-27 29 194 7729 77 124 2.642 1.429 9.979 38.729
atco-enc1-opt2-05-4 386 163 14 636 1 652 800 4.280 1.364 112.927 248.398
atco-enc1-opt2-10-16 152 744 9643 641 139 4.197 1.582 66.488 142.597
atco-enc2-opt1-05-21 526 872 56 533 2 097 393 3.981 1.538 37.100 139.375
atco-enc2-opt1-15-100 580 963 58 752 2 227 755 3.835 1.534 37.918 134.900
bob12s02 77 920 26 294 181 812 2.333 0.471 6.915 8.104
countbitssrl032 55 724 18 607 130 020 2.333 0.471 6.988 10.435

Table 10: Overview of hypergraph instances in training set.

53

A Appendix

Type Hypergraph n m p deg(V) σ(deg(V)) |e| σ(|e|)
dated-10-11-u 629 461 141 860 1 429 872 2.272 0.935 10.080 4.955
dated-10-17-u 1 070 757 229 544 2 471 122 2.308 0.920 10.765 6.790
gss-19-s100 94 548 31 435 222 806 2.357 0.480 7.088 6.516
hwmcc10-timeframe-expansion-k45-
pdtvisns3p02-tseitin

488 120 163 622 1 138 944 2.333 0.471 6.961 15.164

itox-vc1130 441 729 152 256 1 143 974 2.590 0.537 7.513 47.981
manol-pipe-c8nidw 799 867 269 048 1 866 355 2.333 0.471 6.937 16.726
manol-pipe-g10bid-i 792 175 266 405 1 848 407 2.333 0.471 6.938 21.682

Literal 6s133 96 430 140 968 328 924 3.411 8.176 2.333 0.471
6s153 171 292 245 440 572 692 3.343 5.838 2.333 0.471
6s184 66 730 97 516 227 536 3.410 8.468 2.333 0.471
6s9 68 634 100 384 234 228 3.413 8.427 2.333 0.471
aaai10-planning-ipc5-pathways-17-
step21

107 838 308 235 690 466 6.403 6.230 2.240 1.884

ACG-20-5p0 649 432 1 390 931 3 269 132 5.034 4.873 2.350 0.923
ACG-20-5p1 662 392 1 416 850 3 333 531 5.033 4.859 2.353 0.917
AProVE07-27 15 458 29 194 77 124 4.989 19.416 2.642 1.429
atco-enc1-opt2-05-4 28 738 386 163 1 652 800 57.513 130.721 4.280 1.364
atco-enc1-opt2-10-16 18 930 152 744 641 139 33.869 80.832 4.197 1.582
atco-enc2-opt1-05-21 112 732 526 872 2 097 393 18.605 72.377 3.981 1.538
atco-enc2-opt1-15-100 117 116 580 963 2 227 755 19.022 70.295 3.835 1.534
bob12s02 52 588 77 920 181 812 3.457 4.082 2.333 0.471
countbitssrl032 37 213 55 724 130 020 3.494 5.242 2.333 0.471
dated-10-11-u 283 720 629 461 1 429 872 5.040 3.081 2.272 0.935
dated-10-17-u 459 088 1 070 757 2 471 122 5.383 3.851 2.308 0.920
gss-19-s100 62 870 94 548 222 806 3.544 3.294 2.357 0.480
hwmcc10-timeframe-expansion-k45-
pdtvisns3p02-tseitin

327 243 488 120 1 138 944 3.480 7.599 2.333 0.471

itox-vc1130 294 326 441 729 1 143 974 3.887 24.408 2.590 0.537
manol-pipe-c8nidw 538 096 799 867 1 866 355 3.468 8.378 2.333 0.471
manol-pipe-g10bid-i 532 810 792 175 1 848 407 3.469 10.853 2.333 0.471

SPM 2cubes-sphere 101 492 101 492 1 647 264 16.231 2.654 16.231 2.654
2D-54019-highK 54 019 54 019 996 414 18.446 3.109 18.446 6.922
af-shell1 504 855 504 85517 588 875 34.840 1.275 34.840 1.275
Andrews 60 000 60 000 760 154 12.669 3.414 12.669 3.414
as-caida 31 379 26 475 106 762 3.402 30.691 4.033 33.374
av41092 41 092 41 092 1 683 902 40.979 96.937 40.979 167.038
BenElechi1 245 874 245 87413 150 496 53.485 2.995 53.485 2.995
case39 40 216 40 216 1 042 160 25.914 316.226 25.914 316.226
ckt11752-dc-1 49 702 49 702 333 029 6.701 23.529 6.701 23.221
cnr-2000 325 557 247 501 3 216 152 9.879 218.496 12.995 22.679
denormal 89 400 89 400 1 156 224 12.933 0.474 12.933 0.474
gearbox 153 746 153 746 9 080 404 59.061 15.410 59.061 15.410
hvdc1 24 842 24 842 159 981 6.440 2.936 6.440 3.617
laminar-duct3D 67 173 67 173 3 833 077 57.063 29.628 57.063 37.896
lhr14 14 270 14 270 307 858 21.574 15.983 21.574 26.269
light-in-tissue 29 282 29 282 406 084 13.868 2.733 13.868 2.733
Lin 256 000 256 000 1 766 400 6.900 0.310 6.900 0.310
lp-pds20 108 175 33 798 232 647 2.151 0.416 6.883 6.162
m14b 214 765 214 765 3 358 036 15.636 3.131 15.636 3.131
mc2depi 525 825 525 825 2 100 225 3.994 0.076 3.994 0.076
mult-dcop-01 25 187 25 187 193 276 7.674 144.207 7.674 143.814
opt1 15 449 15 449 1 930 655 124.970 42.495 124.970 42.495
poisson3Db 85 623 85 623 2 374 949 27.737 14.712 27.737 14.712

Table 10: Overview of hypergraph instances in training set.

A.2. Hypergraph Benchmark Set
Overview of all hypergraph instances used for benchmarking. These instances are not part
of any training or tuning but only used for evaluation purposes. deg(V) denotes the average
hypernode degrees and σ(deg(V)) the standard deviations of node degrees. Similarly, |e|
denotes the average net sizes and σ(|e|) the standard deviation of net sizes.

54

A.2 Hypergraph Benchmark Set

Type Hypergraph n m p deg(V) σ(deg(V)) |e| σ(|e|)
DAC12 superblue11 952 507 935 731 3 069 269 3.222 6.915 3.280 10.519

superblue12 1 291 931 1 293 436 4 773 600 3.695 2.145 3.691 20.938
superblue16 698 339 697 458 2 280 417 3.265 6.059 3.270 9.052
superblue2 1 010 321 990 899 3 227 167 3.194 5.547 3.257 10.777
superblue7 1 360 217 1 340 418 4 931 418 3.625 3.099 3.679 16.762

ISPD98 ibm01 12 752 14 111 50 566 3.965 2.329 3.583 3.343
ibm02 19 601 19 584 81 199 4.143 2.292 4.146 5.452
ibm03 23 136 27 401 93 573 4.044 3.448 3.415 3.107
ibm07 45 926 48 117 175 639 3.824 2.415 3.650 3.049
ibm09 53 395 60 902 222 088 4.159 3.223 3.647 3.133
ibm11 70 558 81 454 280 786 3.980 3.173 3.447 2.599
ibm13 84 199 99 666 357 075 4.241 3.342 3.583 3.008
ibm15 161 570 186 608 715 823 4.430 3.286 3.836 3.510
ibm17 185 495 189 581 860 036 4.636 2.494 4.537 4.071

Primal 6s10 33 900 99 184 231 428 6.827 16.709 2.333 0.471
6s11-opt 33 276 97 312 227 060 6.824 15.902 2.333 0.471
6s12 34 033 99 580 232 352 6.827 16.688 2.333 0.471
6s130-opt 49 327 144 361 336 841 6.829 13.086 2.333 0.471
6s131-opt 49 282 144 226 336 526 6.829 13.078 2.333 0.471
6s16 31 483 91 888 214 404 6.810 17.301 2.333 0.471
9dlx-vliw-at-b-iq3 69 789 968 295 2 788 367 39.954 224.993 2.880 5.434
AProVE07-01 7502 28 770 76 290 10.169 13.742 2.652 5.131
atco-enc1-opt1-05-21 59 517 561 784 2 167 217 36.413 135.808 3.858 1.564
atco-enc1-opt1-10-21 46 993 270 831 922 875 19.639 70.064 3.408 1.607
atco-enc1-opt1-15-240 61 642 644 099 2 385 303 38.696 132.336 3.703 1.518
atco-enc1-opt2-10-12 9495 147 853 618 608 65.151 143.223 4.184 1.587
atco-enc2-opt1-15-100 58 752 580 963 2 227 755 37.918 134.900 3.835 1.534
bob12m09-opt 51 144 152 446 355 706 6.955 19.566 2.333 0.471
c10bi-i 133 998 398 467 929 755 6.939 24.655 2.333 0.471
ctl-3791-556-unsat-pre 8806 90 812 331 537 37.649 24.330 3.651 0.705
ctl-4291-567-5-unsat-pre 15 232 134 756 462 322 30.352 23.184 3.431 0.788
gss-18-s100 31 364 94 269 222 003 7.078 6.495 2.355 0.480
gss-20-s100 31 503 94 748 223 300 7.088 6.487 2.357 0.480
gss-22-s100 31 616 95 110 224 220 7.092 6.488 2.357 0.481
manol-pipe-c10nid-i 252 516 750 877 1 752 045 6.938 21.824 2.333 0.471

Dual 6s10 99 184 33 900 231 428 2.333 0.471 6.827 16.709
6s11-opt 97 312 33 276 227 060 2.333 0.471 6.824 15.902
6s12 99 580 34 033 232 352 2.333 0.471 6.827 16.688
6s130-opt 144 361 49 327 336 841 2.333 0.471 6.829 13.086
6s131-opt 144 226 49 282 336 526 2.333 0.471 6.829 13.078
6s16 91 888 31 483 214 404 2.333 0.471 6.810 17.301
9dlx-vliw-at-b-iq3 968 295 69 789 2 788 367 2.880 5.434 39.954 224.993
AProVE07-01 28 770 7502 76 290 2.652 5.131 10.169 13.742
atco-enc1-opt1-05-21 561 784 59 517 2 167 217 3.858 1.564 36.413 135.808
atco-enc1-opt1-10-21 270 831 46 993 922 875 3.408 1.607 19.639 70.064
atco-enc1-opt1-15-240 644 099 61 642 2 385 303 3.703 1.518 38.696 132.336
atco-enc1-opt2-10-12 147 853 9495 618 608 4.184 1.587 65.151 143.223
atco-enc2-opt1-15-100 580 963 58 752 2 227 755 3.835 1.534 37.918 134.900
bob12m09-opt 152 446 51 144 355 706 2.333 0.471 6.955 19.566
c10bi-i 398 467 133 998 929 755 2.333 0.471 6.939 24.655
ctl-3791-556-unsat-pre 90 812 8806 331 537 3.651 0.705 37.649 24.330
ctl-4291-567-5-unsat-pre 134 756 15 232 462 322 3.431 0.788 30.352 23.184
gss-18-s100 94 269 31 364 222 003 2.355 0.480 7.078 6.495
gss-20-s100 94 748 31 503 223 300 2.357 0.480 7.088 6.487
gss-22-s100 95 110 31 616 224 220 2.357 0.481 7.092 6.488
manol-pipe-c10nid-i 750 877 252 516 1 752 045 2.333 0.471 6.938 21.824

Literal 6s10 67 800 99 184 231 428 3.413 8.369 2.333 0.471
6s11-opt 66 552 97 312 227 060 3.412 7.966 2.333 0.471
6s12 68 066 99 580 232 352 3.414 8.359 2.333 0.471
6s130-opt 98 654 144 361 336 841 3.414 6.562 2.333 0.471
6s131-opt 98 564 144 226 336 526 3.414 6.558 2.333 0.471
6s16 62 966 91 888 214 404 3.405 8.664 2.333 0.471
9dlx-vliw-at-b-iq3 139 578 968 295 2 788 367 19.977 112.962 2.880 5.434
AProVE07-01 15 004 28 770 76 290 5.085 8.516 2.652 5.131
atco-enc1-opt1-05-21 118 700 561 784 2 167 217 18.258 70.532 3.858 1.564
atco-enc1-opt1-10-21 93 632 270 831 922 875 9.856 38.866 3.408 1.607
atco-enc1-opt1-15-240 122 885 644 099 2 385 303 19.411 69.089 3.703 1.518
atco-enc1-opt2-10-12 18 634 147 853 618 608 33.198 81.246 4.184 1.587

Table 11: Overview of hypergraph instances in benchmark set.

55

A Appendix

Type Hypergraph n m p deg(V) σ(deg(V)) |e| σ(|e|)
atco-enc2-opt1-15-100 117 116 580 963 2 227 755 19.022 70.295 3.835 1.534
bob12m09-opt 102 288 152 446 355 706 3.477 9.795 2.333 0.471
c10bi-i 267 996 398 467 929 755 3.469 12.338 2.333 0.471
ctl-3791-556-unsat-pre 17 612 90 812 331 537 18.825 12.210 3.651 0.705
ctl-4291-567-5-unsat-pre 30 464 134 756 462 322 15.176 11.637 3.431 0.788
gss-18-s100 62 728 94 269 222 003 3.539 3.284 2.355 0.480
gss-20-s100 63 006 94 748 223 300 3.544 3.280 2.357 0.480
gss-22-s100 63 232 95 110 224 220 3.546 3.280 2.357 0.481
manol-pipe-c10nid-i 505 032 750 877 1 752 045 3.469 10.923 2.333 0.471

SPM c-61 43 618 43 618 310 016 7.108 16.760 7.108 16.760
cfd1 70 656 70 656 1 828 364 25.877 2.972 25.877 2.972
Ill-Stokes 20 896 20 896 191 368 9.158 1.562 9.158 1.644
Maragal-6 10 152 21 251 537 694 52.964 54.574 25.302 202.891
mixtank-new 29 957 29 957 1 995 041 66.597 38.335 66.597 38.335
Oregon-1 11 492 11 174 46 818 4.074 32.641 4.190 33.095
powersim 15 838 15 838 67 562 4.266 3.421 4.266 2.701
Pres-Poisson 14 822 14 822 715 804 48.293 5.117 48.293 5.117
rajat26 51 032 51 032 249 302 4.885 22.404 4.885 22.760
Reuters911 13 332 13 314 296 076 22.208 66.741 22.238 66.781
RFdevice 74 104 74 104 365 580 4.933 0.416 4.933 1.782
rgg-n-2-18-s0 262 144 262 141 3 094 566 11.805 3.449 11.805 3.448
rim 22 560 22 560 1 014 951 44.989 25.979 44.989 26.576
scircuit 170 998 170 998 958 936 5.608 4.392 5.608 4.392
sme3Db 29 067 29 067 2 081 063 71.595 37.067 71.595 37.066
spmsrtls 29 995 29 995 229 947 7.666 0.473 7.666 0.473
ted-A 10 605 10 605 424 587 40.037 22.782 40.037 37.196
thermal1 82 654 82 654 574 458 6.950 0.877 6.950 0.877
thermomech-TC 102 158 102 158 711 558 6.965 0.715 6.965 0.715
trans4 116 835 116 835 766 396 6.560 361.435 6.560 361.498
vibrobox 12 328 12 328 342 828 27.809 16.089 27.809 16.089
viscoplastic2 32 769 32 769 381 326 11.637 14.439 11.637 13.957
Zhao2 33 861 33 861 166 453 4.916 1.038 4.916 0.437

Table 11: Overview of hypergraph instances in benchmark set.

A.3. List of Features

List of features regarding to a hypergraph H = (V,E, c, ω) and a pair of hypernodes (u, v) with
u 6= v, u, v ∈ e for any e ∈ E. The first eleven features are global features that are computed
once per hypergraph instance, whereas the subsequent 14 features are local features.

F01 Count of hypernodes n
F02 Count of hyperedges m
F03 Count of pins p
F04 Network ratio

r(H) := p−m
n

(A.1)

F05 Standard deviation of hypernode degrees
F06 Minimum hypernode degree
F07 Maximum hypernode degree
F08 First-quartile of hypernode degrees
F09 Average hyperedge size
F10 Standard deviation of hyperedge sizes
F11 Maximum hyperedge size
F12 Count of common neighbours |Γ(u) ∩ Γ(v) |

56

A.3 List of Features

F13 Count of all neighbours |Γ(u) ∪ Γ(v) |
F14 Jaccard indices

J(u, v) := |Γ(u) ∩ Γ(v) |
|Γ(u) ∪ Γ(v) | (A.2)

F15 Dice similarity
D(u, v) := 2 |Γ(u) ∩ Γ(v) |∑

w∈Γ(u)∩Γ(v) deg(w) (A.3)

F16 Cosine similarity
C(u, v) := |Γ(u) ∩ Γ(v) |√

deg(u) deg(v)
(A.4)

F17 Average hypernode degrees of u and v
deg(u) + deg(v)

2 (A.5)

F18 Average hypernode degree of common neighbours∑
w∈Γ(u)∩Γ(v) deg(w)
|Γ(u) ∩ Γ(v) | (A.6)

F19 χ2-metric hypernode degree of common neighbours

χ2
deg,∩(u, v) :=

∑
w∈Γ(u)∩Γ(v)

(
deg(w)− deg(V)

)2

deg(V)
(A.7)

F20 Average hypernode degree of all neighbours∑
w∈Γ(u)∪Γ(v) deg(w)
|Γ(u) ∪ Γ(v) | (A.8)

F21 χ2-metric hypernode degree of all neighbours

χ2
deg,∪(u, v) :=

∑
w∈Γ(u)∪Γ(v)

(
deg(w)− deg(V)

)2

deg(V)
(A.9)

F22 Closeness metric within the HGCEP algorithm [68]

closeness(u, v) := | I(u) ∩ I(v) |
min(deg(u) , deg(v)) . (A.10)

F23 Bandwidth clustering rating function [58]

Ψ(u, v) :=
∑

e∈I(u)∩I(v)

1
| e| − 1 (A.11)

F24 Strawman connectivity function [31, 65]

connectivity(u, v) := Ψ(u, v)
(deg(u)−Ψ(u, v)) (deg(v)−Ψ(u, v)) (A.12)

F25 Count of common incident nets | I(u) ∩ I(v) |

57

A Appendix

A.4. Training Set Feature Correlation

Table 12 shows the correlation matrix of the generated training samples. Due to the symmetry
of the matrices, the lower half has been omitted.

A.5. Local Feature Value Distributions of Training Set

Fig. 8 shows the distribution of the generated sample feature values regarding all 14 local
features (F12 – F25) on the training set given in Section A.1.

A.6. Principal Components

Table 13 shows the calculated principal components with respective eigenvalues in decreasing
order. Only the first 20 components are given because they already explain almost all variance
on the data. Thereafter, a plot showing the (cumulative) explained variance regarding the
principal components is given in Fig. 9.

A.7. Trained Model

Table 15-18 show the final weights that have been trained by the model presented. Config-
urations for model training were χ2, χ4, χ8, and χ16. In each table, the first column shows
the trained weights in respect to the principal component variables, whereas the remaining
columns show the (sorted) weights regarding to the actual features. These weights have been
calculated by the formulas given in Section 4.4.3 from the principal component weights. Be-
sides the weights given below, the trained biases are depicted in Table 14.

Trained Weights PC × Weight Sorted Weights
PC1 −1.074 031 F01 −2.377 531 F06 −3.780 470
PC2 −1.057 926 F02 −0.827 558 F05 −2.466 181
PC3 0.172 668 F03 −0.118 051 F01 −2.377 531
PC4 −0.793 658 F04 −1.971 080 F25 −2.256 006
PC5 0.862 914 F05 −2.466 181 F04 −1.971 080
PC6 1.244 527 F06 −3.780 470 F12 −1.861 438
PC7 1.984 199 F07 −0.546 643 F16 −1.449 878
PC8 0.132 208 F08 −0.556 076 F02 −0.827 558
PC9 −3.337 685 F09 −0.305 025 F15 −0.715 931
PC10 1.214 255 F10 −0.069 950 F08 −0.556 076
PC11 −4.005 485 F11 0.048 892 F07 −0.546 643
PC12 0.455 890 F12 −1.861 438 F09 −0.305 025
PC13 0.102 353 F13 0.035 988 F23 −0.151 894
PC14 1.733 614 F14 0.430 530 F03 −0.118 051
PC15 −1.161 052 F15 −0.715 931 F10 −0.069 950
PC16 0.382 953 F16 −1.449 878 F13 0.035 988
PC17 1.239 500 F17 0.707 782 F11 0.048 892
PC18 −0.143 975 F18 0.485 509 F20 0.099 216

Table 15: Trained model weights θ for configuration χ2.

58

A.7 Trained Model

Trained Weights PC × Weight Sorted Weights
PC19 0.624 102 F19 0.357 077 F19 0.357 077
PC20 2.503 893 F20 0.099 216 F14 0.430 530

F21 0.895 118 F18 0.485 509
F22 1.927 743 F17 0.707 782
F23 −0.151 894 F21 0.895 118
F24 1.638 310 F24 1.638 310
F25 −2.256 006 F22 1.927 743

Table 15: Trained model weights θ for configuration χ2.

Trained Weights PC × Weight Sorted Weights
PC1 −1.140 626 F01 −2.420 451 F06 −4.451 649
PC2 −0.880 468 F02 −0.612 157 F05 −2.497 803
PC3 0.156 043 F03 −0.069 827 F25 −2.433 747
PC4 −0.703 956 F04 −1.734 019 F01 −2.420 451
PC5 1.055 820 F05 −2.497 803 F12 −1.759 176
PC6 1.580 498 F06 −4.451 649 F04 −1.734 019
PC7 1.401 284 F07 −0.750 298 F16 −0.872 869
PC8 0.728 773 F08 −0.340 745 F07 −0.750 298
PC9 −3.471 314 F09 −0.168 370 F02 −0.612 157
PC10 1.243 087 F10 −0.282 811 F11 −0.428 755
PC11 −4.264 803 F11 −0.428 755 F08 −0.340 745
PC12 0.174 213 F12 −1.759 176 F15 −0.309 094
PC13 0.476 610 F13 0.153 572 F10 −0.282 811
PC14 1.267 631 F14 0.664 590 F09 −0.168 370
PC15 −0.653 063 F15 −0.309 094 F03 −0.069 827
PC16 0.560 719 F16 −0.872 869 F23 0.005 142
PC17 1.693 241 F17 0.925 816 F19 0.150 614
PC18 −0.095 501 F18 0.388 761 F13 0.153 572
PC19 0.773 145 F19 0.150 614 F18 0.388 761
PC20 2.788 756 F20 0.436 655 F20 0.436 655

F21 0.911 352 F14 0.664 590
F22 2.069 115 F21 0.911 352
F23 0.005 142 F17 0.925 816
F24 1.182 116 F24 1.182 116
F25 −2.433 747 F22 2.069 115

Table 16: Trained model weights θ for configuration χ4.

Trained Weights PC × Weight Sorted Weights
PC1 −1.106 286 F01 −2.095 138 F06 −4.215 220
PC2 −0.730 284 F02 −0.517 339 F25 −2.513 985
PC3 0.223 768 F03 0.445 331 F05 −2.227 685
PC4 −0.766 722 F04 −1.541 891 F01 −2.095 138

Table 17: Trained model weights θ for configuration χ8.

59

A Appendix

Trained Weights PC × Weight Sorted Weights
PC5 0.645 064 F05 −2.227 685 F04 −1.541 891
PC6 1.517 715 F06 −4.215 220 F12 −1.430 784
PC7 0.072 785 F07 −1.092 341 F07 −1.092 341
PC8 1.494 539 F08 −0.400 105 F10 −1.024 801
PC9 −3.398 498 F09 −0.765 670 F09 −0.765 670
PC10 1.228 565 F10 −1.024 801 F11 −0.532 017
PC11 −3.757 705 F11 −0.532 017 F02 −0.517 339
PC12 −0.173 322 F12 −1.430 784 F08 −0.400 105
PC13 0.843 739 F13 0.348 004 F15 −0.196 468
PC14 1.537 078 F14 0.864 251 F19 −0.080 809
PC15 0.144 702 F15 −0.196 468 F16 −0.044 116
PC16 0.629 818 F16 −0.044 116 F23 0.142 590
PC17 1.471 114 F17 1.077 300 F24 0.276 164
PC18 −0.019 224 F18 0.292 452 F18 0.292 452
PC19 0.607 581 F19 −0.080 809 F13 0.348 004
PC20 3.003 989 F20 1.138 310 F03 0.445 331

F21 0.877 965 F14 0.864 251
F22 1.919 592 F21 0.877 965
F23 0.142 590 F17 1.077 300
F24 0.276 164 F20 1.138 310
F25 −2.513 985 F22 1.919 592

Table 17: Trained model weights θ for configuration χ8.

Trained Weights PC × Weight Sorted Weights
PC1 −1.051 619 F01 −1.873 995 F06 −3.941 943
PC2 −0.561 281 F02 −0.602 066 F25 −2.573 413
PC3 0.186 868 F03 0.811 416 F05 −1.936 295
PC4 −0.835 684 F04 −1.349 845 F01 −1.873 995
PC5 0.448 364 F05 −1.936 295 F07 −1.403 015
PC6 1.468 040 F06 −3.941 943 F10 −1.389 111
PC7 −0.729 113 F07 −1.403 015 F04 −1.349 845
PC8 1.721 431 F08 −0.468 159 F09 −1.149 443
PC9 −3.339 197 F09 −1.149 443 F12 −1.145 125
PC10 1.264 178 F10 −1.389 111 F11 −0.669 732
PC11 −3.404 449 F11 −0.669 732 F02 −0.602 066
PC12 −0.347 248 F12 −1.145 125 F08 −0.468 159
PC13 0.953 824 F13 0.576 435 F24 −0.300 447
PC14 1.736 106 F14 0.938 662 F19 −0.236 993
PC15 0.843 317 F15 −0.143 804 F15 −0.143 804
PC16 0.593 659 F16 0.349 864 F23 0.115 182
PC17 1.245 351 F17 1.181 380 F16 0.349 864
PC18 0.053 798 F18 0.352 108 F18 0.352 108
PC19 0.420 875 F19 −0.236 993 F13 0.576 435
PC20 3.050 799 F20 1.434 695 F03 0.811 416

Table 18: Trained model weights θ for configuration χ16.
60

A.8 Hypergraph Pruning Solution Quality Plots

Trained Weights PC × Weight Sorted Weights
F21 0.879 427 F21 0.879 427
F22 1.777 372 F14 0.938 662
F23 0.115 182 F17 1.181 380
F24 −0.300 447 F20 1.434 695
F25 −2.573 413 F22 1.777 372

Table 18: Trained model weights θ for configuration χ16.

A.8. Hypergraph Pruning Solution Quality Plots

Fig. 10 comprises performance profile plots for all configurations aggregated as well as for each
configuration on its own.

A.9. Hypergraph Pruning Runtime Plots

Fig. 11 and 12 contain runtime plots both for all configurations aggregated as well as for each
configuration on its own. The plots on the left show absolute running times of the presented
approach as well as of the partitioner KaHyPar-CA, whereas the plots on the right show the
running times of our approach in relation to the running times of KaHyPar-CA per-instance.

61

A Appendix

F01
F02

F03
F04

F05
F06

F07
F08

F09
F10

F11
F12

F13
F14

F15
F16

F17
F18

F19
F20

F21
F22

F23
F24

F25
F01

1
.00

0
.31

0
.04
−

0
.45
−

0
.32
−

0
.07
−

0
.09
−

0
.29
−

0
.27
−

0
.07

0
.14
−

0
.10
−

0
.10
−

0
.20

0
.60

0
.00
−

0
.07
−

0
.13
−

0
.04
−

0
.22
−

0
.06

0
.05
−

0
.02

0
.18
−

0
.03

F02
1
.00

0
.02
−

0
.33
−

0
.10
−

0
.04
−

0
.05
−

0
.27
−

0
.47
−

0
.32

0
.02
−

0
.15
−

0
.16
−

0
.35
−

0
.01
−

0
.11
−

0
.06
−

0
.04
−

0
.06
−

0
.06
−

0
.07
−

0
.30
−

0
.03

0
.16
−

0
.05

F03
1
.00

0
.49
−

0
.23

0
.57
−

0
.17

0
.70

0
.45
−

0
.22
−

0
.22
−

0
.10
−

0
.12

0
.62
−

0
.40
−

0
.10
−

0
.06
−

0
.05
−

0
.05
−

0
.00
−

0
.07

0
.67
−

0
.02
−

0
.17
−

0
.02

F04
1
.00

0
.18

0
.51
−

0
.13

0
.86

0
.76
−

0
.04
−

0
.21
−

0
.01
−

0
.04

0
.62
−

0
.57
−

0
.10
−

0
.01

0
.09
−

0
.04

0
.23
−

0
.04

0
.50
−

0
.02
−

0
.23
−

0
.00

F05
1
.00
−

0
.12

0
.71
−

0
.19
−

0
.11

0
.28

0
.30

0
.50

0
.54

0
.04
−

0
.25

0
.09

0
.44

0
.35

0
.40

0
.37

0
.47
−

0
.27

0
.23
−

0
.08

0
.26

F06
1
.00
−

0
.14

0
.57

0
.46
−

0
.11
−

0
.17
−

0
.06
−

0
.08

0
.41
−

0
.32
−

0
.07
−

0
.06
−

0
.03
−

0
.05

0
.03
−

0
.06

0
.43
−

0
.03
−

0
.14
−

0
.02

F07
1
.00
−

0
.20
−

0
.14

0
.28

0
.47

0
.60

0
.65
−

0
.01
−

0
.07

0
.21

0
.51

0
.26

0
.51

0
.16

0
.60
−

0
.13

0
.30

0
.01

0
.33

F08
1
.00

0
.80
−

0
.14
−

0
.24
−

0
.08
−

0
.11

0
.66
−

0
.49
−

0
.10
−

0
.08
−

0
.03
−

0
.08

0
.07
−

0
.09

0
.69
−

0
.04
−

0
.20
−

0
.03

F09
1
.00

0
.36
−

0
.16

0
.05

0
.04

0
.63
−

0
.34

0
.07
−

0
.04
−

0
.02
−

0
.04

0
.06
−

0
.04

0
.62
−

0
.02
−

0
.22
−

0
.00

F10
1
.00

0
.45

0
.53

0
.58

0
.11

0
.08

0
.38

0
.13

0
.06

0
.12

0
.02

0
.24
−

0
.02

0
.06
−

0
.05

0
.10

F11
1
.00

0
.55

0
.59
−

0
.06

0
.19

0
.34

0
.19

0
.06

0
.18
−

0
.03

0
.31
−

0
.09

0
.09

0
.16

0
.12

F12
1
.00

0
.89

0
.18
−

0
.06

0
.42

0
.66
−

0
.01

0
.52
−

0
.00

0
.71

0
.00

0
.47
−

0
.05

0
.58

F13
1
.00

0
.09
−

0
.06

0
.36

0
.67

0
.15

0
.56
−

0
.01

0
.77
−

0
.05

0
.38
−

0
.05

0
.46

F14
1
.00
−

0
.36

0
.12

0
.08
−

0
.04

0
.06

0
.13

0
.07

0
.72

0
.08
−

0
.29

0
.10

F15
1
.00

0
.08
−

0
.08
−

0
.15
−

0
.07
−

0
.24
−

0
.07
−

0
.13
−

0
.04

0
.14
−

0
.05

F16
1
.00
−

0
.02
−

0
.03

0
.05
−

0
.04

0
.10
−

0
.01
−

0
.01
−

0
.04
−

0
.01

F17
1
.00

0
.11

0
.78

0
.03

0
.89
−

0
.03

0
.69
−

0
.04

0
.78

F18
1
.00

0
.27

0
.53

0
.18
−

0
.11
−

0
.01
−

0
.05
−

0
.01

F19
1
.00

0
.13

0
.90
−

0
.03

0
.46
−

0
.03

0
.59

F20
1
.00
−

0
.01
−

0
.06
−

0
.01
−

0
.07
−

0
.00

F21
1
.00
−

0
.03

0
.57
−

0
.03

0
.65

F22
1
.00

0
.06
−

0
.02

0
.08

F23
1
.00
−

0
.02

0
.88

F24
1
.00
−

0
.02

F25
1
.00

T
able

12:C
orrelation

m
atrix

ofthe
generated

training
sam

ple
features

62

A.9 Hypergraph Pruning Runtime Plots

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5
·107

F12 Feature Value
0 50 100 150 200 250 300

0

0.5

1

·107

F13 Feature Value
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5
·107

F14 Feature Value

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
·107

F15 Feature Value
0 1 2 3 4 5

0

0.5

1

·107

F16 Feature Value
0 10 20 30 40 50 60

0

0.5

1

1.5

·107

F17 Feature Value

0 20 40 60 80
0

0.5

1

1.5

·107

F18 Feature Value
0 0.2 0.4 0.6 0.8 1

0

0.5

1

·107

F19 Feature Value
0 10 20 30 40 50 60

0

0.5

1

1.5

·107

F20 Feature Value

0 20 40 60 80 100
0

1

2

3

·107

F21 Feature Value
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4
·107

F22 Feature Value
0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

·107

F23 Feature Value

0 0.2 0.4 0.6 0.8 1
·10−3

0

0.5

1

1.5

2
·107

F24 Feature Value
0 10 20 30 40 50 60

0

1

2

3

4

·107

F25 Feature Value

Figure 8: Feature value distributions for all 14 local features.

63

A Appendix

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

E
igen

value
6
.30

5
.26

2
.30

2
.24

1
.34

1
.14

0
.96

0
.78

0
.69

0
.67

0
.54

0
.47

0
.40

0
.42

0
.30

0
.28

0
.24

0
.17

0
.15

0
.11

E
xplained

Variance
(in

%
)

25
.22

21
.06

9
.21

8
.95

5
.34

4
.55

3
.85

3
.11

2
.78

2
.69

2
.17

1
.87

1
.61

1
.70

1
.19

1
.11

0
.97

0
.68

0
.59

0
.42

C
um

ulative
E

xplained
Variance

(in
%

)

25
.22

46
.27

55
.49

64
.44

69
.78

74
.33

78
.18

81
.29

84
.06

86
.75

88
.92

90
.79

92
.39

94
.09

95
.28

96
.40

97
.36

98
.04

98
.63

99
.06

P
C

A
com

po-
nents

0
.03

−
0
.18

−
0
.31

−
0
.21

−
0
.39

0
.31

0
.17

0
.01

0
.04

0
.19

−
0
.00

−
0
.24

0
.29

−
0
.01

−
0
.19

−
0
.29

−
0
.35

0
.35

−
0
.06

−
0
.06

0
.04

−
0
.18

−
0
.17

0
.19

−
0
.43

−
0
.40

0
.12

−
0
.20

−
0
.20

0
.18

0
.29

−
0
.16

0
.27

0
.10

0
.15

0
.35

0
.30

−
0
.03

0
.02

0
.00

0
.12

0
.30

−
0
.20

−
0
.00

−
0
.35

−
0
.08

0
.13

0
.01

0
.07

−
0
.07

0
.18

−
0
.01

−
0
.18

−
0
.23

−
0
.14

−
0
.32

−
0
.09

−
0
.63

0
.11

0
.11

0
.07

0
.38

0
.12

0
.09

0
.05

−
0
.05

−
0
.13

0
.03

0
.05

0
.11

−
0
.07

0
.03

0
.42

0
.31

−
0
.23

0
.02

−
0
.04

−
0
.05

−
0
.11

−
0
.04

−
0
.26

0
.04

0
.31

0
.19

−
0
.06

−
0
.09

−
0
.03

0
.06

0
.37

0
.16

−
0
.17

−
0
.23

0
.29

−
0
.12

−
0
.31

0
.18

−
0
.12

−
0
.24

−
0
.20

0
.08

0
.09

0
.26

−
0
.10

0
.01

−
0
.24

−
0
.13

0
.06

0
.07

−
0
.28

0
.34

−
0
.71

0
.02

−
0
.29

−
0
.08

0
.01

0
.16

0
.00

0
.08

−
0
.02

0
.00

−
0
.30

0
.01

0
.14

0
.03

−
0
.22

−
0
.07

−
0
.02

0
.17

0
.36

−
0
.04

−
0
.17

−
0
.05

0
.16

−
0
.35

0
.56

−
0
.15

0
.11

0
.13

0
.19

0
.01

0
.12

0
.38

−
0
.05

−
0
.01

−
0
.04

−
0
.04

−
0
.09

0
.07

−
0
.03

−
0
.02

0
.04

0
.16

0
.26

0
.23

0
.16

−
0
.23

0
.12

−
0
.01

0
.15

−
0
.16

0
.06

0
.36

0
.07

−
0
.19

0
.14

0
.14

−
0
.09

0
.04

−
0
.26

0
.15

0
.09

−
0
.15

0
.29

−
0
.01

0
.27

−
0
.01

−
0
.04

0
.03

0
.18

0
.15

−
0
.18

0
.04

0
.26

−
0
.39

0
.12

0
.11

−
0
.03

−
0
.03

−
0
.30

0
.37

0
.26

−
0
.27

−
0
.09

−
0
.26

0
.06

0
.12

−
0
.07

−
0
.18

−
0
.04

0
.01

−
0
.21

−
0
.07

0
.13

−
0
.30

−
0
.31

−
0
.10

−
0
.14

−
0
.01

0
.17

0
.21

0
.11

0
.51

−
0
.14

0
.38

0
.15

0
.12

−
0
.35

−
0
.05

0
.02

0
.16

−
0
.34

0
.08

0
.01

−
0
.20

−
0
.01

−
0
.17

0
.02

−
0
.11

0
.01

0
.03

0
.01

−
0
.05

−
0
.12

0
.12

−
0
.20

−
0
.19

0
.30

0
.13

−
0
.10

−
0
.31

−
0
.35

0
.07

0
.07

−
0
.17

−
0
.07

−
0
.11

0
.02

0
.12

−
0
.10

0
.06

0
.08

0
.06

−
0
.08

0
.02

−
0
.24

−
0
.25

0
.31

0
.08

−
0
.00

−
0
.11

0
.01

0
.36

−
0
.02

−
0
.13

−
0
.08

0
.07

0
.12

−
0
.12

0
.31

−
0
.16

0
.15

−
0
.16

−
0
.20

−
0
.02

−
0
.20

0
.50

−
0
.09

0
.25

0
.43

−
0
.14

−
0
.00

−
0
.26

−
0
.16

−
0
.28

0
.03

0
.45

0
.09

0
.07

0
.15

0
.09

−
0
.26

0
.03

0
.15

0
.21

−
0
.01

0
.20

0
.42

−
0
.42

0
.21

−
0
.02

−
0
.11

0
.00

0
.18

−
0
.37

−
0
.09

−
0
.15

0
.21

−
0
.43

−
0
.22

−
0
.56

−
0
.29

−
0
.01

0
.24

−
0
.00

−
0
.01

0
.00

−
0
.08

−
0
.06

−
0
.02

0
.16

−
0
.33

0
.08

−
0
.23

0
.15

0
.08

0
.03

0
.00

0
.10

−
0
.06

−
0
.02

0
.01

−
0
.08

−
0
.03

0
.11

−
0
.16

−
0
.05

0
.11

0
.15

0
.31

0
.62

−
0
.09

0
.03

0
.29

0
.28

−
0
.29

0
.43

0
.05

−
0
.01

−
0
.31

−
0
.06

0
.10

0
.48

0
.13

−
0
.31

−
0
.21

0
.11

0
.10

0
.09

0
.06

−
0
.01

−
0
.30

0
.07

−
0
.14

0
.17

−
0
.06

0
.18

0
.06

0
.27

−
0
.23

−
0
.28

0
.01

−
0
.17

−
0
.05

0
.21

0
.23

0
.21

−
0
.29

−
0
.17

−
0
.22

−
0
.20

−
0
.04

0
.08

0
.32

0
.30

−
0
.20

0
.35

0
.01

−
0
.44

0
.05

0
.07

−
0
.02

−
0
.30

−
0
.29

0
.37

0
.17

−
0
.23

0
.09

−
0
.02

−
0
.00

0
.01

−
0
.35

0
.07

−
0
.15

0
.07

−
0
.03

0
.03

0
.03

0
.28

−
0
.16

−
0
.15

0
.03

−
0
.04

−
0
.01

0
.12

−
0
.01

0
.05

−
0
.04

−
0
.06

0
.02

−
0
.17

0
.08

0
.31

−
0
.20

−
0
.20

−
0
.16

0
.22

−
0
.13

−
0
.02

0
.22

−
0
.14

0
.11

0
.05

−
0
.06

−
0
.13

0
.12

0
.17

0
.31

0
.12

−
0
.59

0
.12

−
0
.24

0
.07

−
0
.32

0
.12

0
.20

0
.05

−
0
.06

−
0
.46

0
.06

0
.16

−
0
.05

0
.20

0
.11

−
0
.21

0
.08

0
.01

−
0
.14

−
0
.11

0
.15

−
0
.42

−
0
.00

−
0
.14

−
0
.09

−
0
.04

−
0
.22

0
.01

−
0
.88

−
0
.07

−
0
.12

−
0
.17

−
0
.09

−
0
.17

−
0
.01

−
0
.07

−
0
.14

0
.02

−
0
.00

−
0
.05

0
.14

−
0
.04

−
0
.27

0
.09

−
0
.33

0
.11

0
.19

0
.05

−
0
.05

−
0
.35

0
.01

0
.13

−
0
.01

0
.11

0
.03

−
0
.05

0
.03

0
.02

−
0
.04

−
0
.01

−
0
.22

0
.33

T
able

13:C
om

ponents
yielded

by
the

PC
A

on
the

training
sam

ples.

64

A.9 Hypergraph Pruning Runtime Plots

0 5 10 15 20 25
0

5

10

15

20

25

Principal Components for configuration χ2

Figure 9: (Cumulative) Explained Variance of the 25 Principal Components on the training
samples.

Configuration Bias θ0
χ2 −1.979 262
χ4 −2.104 753
χ8 −1.766 289
χ16 −1.625 009

Table 14: Trained model biases θ0.

65

A Appendix

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2
Quality relative to best

10 100 7

(a) Aggregated plot for all configurations χ.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2
Quality relative to best

10 100 7

(b) Configuration χ2.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2
Quality relative to best

10 100 7

(c) Configuration χ4.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2
Quality relative to best

10 100 7

(d) Configuration χ8.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2
Quality relative to best

10 100 7

(e) Configuration χ16.

Figure 10: Performance profile plots comparing the presented approach (dashed line) and
the KaHyPar-CA partitioner (solid line) in respect of all configurations.

66

A.9 Hypergraph Pruning Runtime Plots

10.69 3911.210100101102
103
104

105

106

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(a) Absolute runtime for all configurations.

23242526272829210211212213214

0 100 200 300
Instances

R
el
.
tim

e
to

K
aH

yP
ar
-C

A

ML-prepro-0.5

(b) Relative runtime for all configurations.

6.71 5169.080100101102
103
104

105

106

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(c) Absolute runtime for configuration χ2.

26272829210211212213214

0 25 50 75
Instances

R
el
.
tim

e
to

K
aH

yP
ar
-C

A

ML-prepro-0.5

(d) Relative runtime for configuration χ2.

9.29 5174.920100101102
103
104

105

106

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(e) Absolute runtime for configuration χ4.

26
27
28
29

210
211
212
213

0 25 50 75
Instances

R
el
.
tim

e
to

K
aH

yP
ar
-C

A

ML-prepro-0.5

(f) Relative runtime for configuration χ4.

Figure 11: Runtime plots comparing the presented approach and the KaHyPar-CA parti-
tioner in respect of all configurations.

67

A Appendix

11.12 2478.310
100101
102

103

104

105

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(a) Absolute runtime for configuration χ8.

25
26
27
28
29

210
211

0 25 50 75
Instances

R
el
.
tim

e
to

K
aH

yP
ar
-C

A

ML-prepro-0.5

(b) Relative runtime for configuration χ8.

19.09 3400.550100101102
103
104

105

106

KaHyPa
r-CA
ML-prep

ro-0.5

Ru
nn

in
g
T
im

e
[s

]

(c) Absolute runtime for configuration χ16.

23
24
25
26
27
28
29

210
211

0 25 50 75
Instances

R
el
.
tim

e
to

K
aH

yP
ar
-C

A

ML-prepro-0.5

(d) Relative runtime for configuration χ16.

Figure 12: Runtime plots comparing the presented approach and the KaHyPar-CA parti-
tioner in respect of all configurations (continued).

68

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure of Thesis

	2 Preliminaries
	2.1 Hypergraphs
	2.1.1 General Definitions
	2.1.2 Partitions and Partitioning Problem

	2.2 Machine-Learning
	2.2.1 Logistic Regression
	2.2.2 Principal Component Analysis (PCA)

	3 Related Work
	3.1 Multi-level Hypergraph Partitioning
	3.1.1 Coarsening Phase
	3.1.2 Refinement Phase

	3.2 Learning Heuristics for Search-Space Pruning
	3.2.1 Search-Space Pruning for Clique Detection
	3.2.2 Learning Objective Boundaries for Constraint Optimisation Problems

	4 Machine-Learning based Hypergraph Pruning for Partitioning
	4.1 Idea
	4.2 Feature Selection
	4.2.1 Global Hypergraph Features
	4.2.2 Hypernode Pair Features

	4.3 Feature Computation
	4.4 Model Training
	4.4.1 Model Architecture
	4.4.2 Input Normalisation
	4.4.3 Dimensionality Reduction using PCA
	4.4.4 Dealing with Overfitting
	4.4.5 Dealing with Unbalanced Class Sizes
	4.4.6 Train-Validation-Test Split
	4.4.7 Tuning Hyperparameters

	4.5 Hypergraph Pruning

	5 Evaluation
	5.1 Experimental Setup
	5.1.1 Instances
	5.1.2 Feature Computation
	5.1.3 Model Training
	5.1.4 Hypergraph Pruning

	5.2 Experimental Results
	5.2.1 Model Accuracies
	5.2.2 Model Analysis
	5.2.3 Hypergraph Pruning

	6 Conclusion
	6.1 Future Work

	Bibliography
	A Appendix
	A.1 Hypergraph Training Set
	A.2 Hypergraph Benchmark Set
	A.3 List of Features
	A.4 Training Set Feature Correlation
	A.5 Local Feature Value Distributions of Training Set
	A.6 Principal Components
	A.7 Trained Model
	A.8 Hypergraph Pruning Solution Quality Plots
	A.9 Hypergraph Pruning Runtime Plots

