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Zusammenfassung

Das NP-vollstandige aussagenlogische Erfiillbarkeitsproblem (SAT) ist ein
niitzliches Werkzeug fiir die Modellierung verschiedener Anwendungen von
der Kryptographie [66] bis hin zu Planungsaufgaben [34]. In der Regel schnei-
den verschiedene SAT-Solver in verschiedenen Teilbereichen des Instanzraums
am besten ab. Die Arbeit befasst sich mit der instanzspezifischen Algorith-
menkonfiguration, die Algorithmenkonfiguration [42, 5] und -selektion [41]
miteinander verbindet. Wir wollen die beste SAT-Solver-Konfiguration, ein-
schlieklich des zu verwendenden Solvers, fiir jede Partition des Instanzraums
finden. Allerdings gibt es eine gegenseitige Abhéngigkeit zwischen der Suche
nach guten Konfigurationen fiir alle Partitionen und der Suche nach guten
Partitionierungen, die gut konfiguriert werden kénnen. Um dieses Problem
zu 16sen, schlagen wir einen neuartigen evolutiondren Algorithmus vor, der
Entscheidungsbéaume zur Partitionierung des Instanzraums verwendet. Er er-
fiillt mehrere wiinschenswerte Kriterien, darunter die eingebaute Interpretier-
barkeit von Entscheidungsbiéumen und Robustheit, die experimentell gezeigt
wird. Dariiber hinaus hat unser evolutiondrer Ansatz eine vergleichbare Lei-
stung wie der aktuelle Algorithmenkonfigurator Optuna [5].



Abstract

The NP-complete propositional satisfiability problem (SAT) is a useful tool
for modeling various kinds of applications ranging from cryptography [66] to
planning [34]. Usually, different SAT solvers perform best on different sub-
regions of problem instance space. We address the per-set algorithm config-
uration problem, which combines both, algorithm configuration [42, 5] and
algorithm selection [41]. We want to find the best SAT solver configuration,
including which solver to use, for each partition of instance space. There is a
recurrence between finding good configurations for all partitions and finding
good partitionings that can be tuned well, though. To tackle this problem, we
propose a novel evolutionary algorithm that evolves decision trees for parti-
tioning instance space. It fulfills several desirable criteria including the built-in
interpretability of decision trees and robustness, that we show experimentally.
Furthermore, our evolutionary trees approach has comparable performance to
the state-of-the-art algorithm configurator Optuna |[5].
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1 INTRODUCTION

1 Introduction

The propositional satisfiability problem (SAT) is the archetypal NP-complete problem.
It has various applications ranging from planning and scheduling [34| over model check-
ing [20] to cryptoanalysis [66]. Usually, different SAT solvers and their configurations
perform best on different subregions of problem instance space. Tuning SAT solvers [42,
41, 27|, creating portfolios of complementary solvers [11, 6], as well as selecting a solver
out of a portfolio for each problem instance |69, 25| are well-established in this field.
Tuning algorithms is also known as algorithm configuration. It seeks to find the best
configurations for a solver on a given benchmark. Portfolio creation tries to exploit the
complementarity of solvers by bundling a small number of solvers that, together, solve
more instances than individually. Finally, algorithm selection has the goal of selecting an
algorithm out of a portfolio for each problem instance. It tries to predict which algorithm
is best at solving a particular instance. This is also known as per-instance algorithm
selection [2].

Advances in the field of automated machine learning (AutoML) show the benefit of com-
bining algorithm configuration as well as selection [67, 30, 51| within the framework of
the CASH problem (combined algorithm selection and hyperparameter optimization), i.e.,
find me the best algorithm with the best configuration out of a set of possible algorithms
and configurations in the least amount of time. Thornton et al. [67], for example, show
that their implementation outperforms a greedy baseline, i.e., running all algorithms with
a standard hyperparameter setting and then individually tuning the most promising can-
didates. Furthermore, per-instance algorithm configuration (PTAC) is a superset of this.
Its goal is, similar to ours, to find the best algorithm or configuration for each problem
instance, respectively. An example of this is the ISAC approach [48]. Kadioglu et al. [48|
cluster the instance space based on problem-instance features and then tune solvers for
each cluster with established general algorithm configurators, e.g., SMAC [42]. This se-
quential cluster-then-tune process assumes however that instances that are close in feature
space are solved best by the same configurations. There are mainly three problems with
this. First, it is unclear whether this is true in general as this is mainly dependent on
the employed features. Second, the instance feature space is highly dimensional. Finding
clusters in high-dimensional data is difficult because of the curse of dimensionality |29, 4]:
The higher the dimension, the more similar feature vectors seem. Third, the initial clus-
tering is static. It cannot be altered, i.e., another grouping of instances that is informed
by already obtained runtimes could lead to better configuration improvements overall.

1.1 Contributions

In this work, we present a novel tuning and algorithm selection approach. Given a fixed
portfolio of SAT solvers, we propose an evolutionary algorithm that tries to choose the
best algorithm with the best configuration for each region of problem instance space. We
initially partition instances into groups. This partitioning is subject to change throughout
the algorithm. Then, we tune the portfolio members on their assigned partitions of the
benchmark set. Finally, we adapt the partitioning of the instance space informed by how
well solvers can be tuned on it and repeat the aforementioned steps. The evolutionary al-
gorithm tackles this recurrence between partitioning instance space and how well instance
partitions can be tuned. The problem we solve is specified in Definition 1.1. Note that
different SAT solver choices are implicitly included within the configuration space ©.



1.2 OUTLINE

Definition 1.1 (Per-Set Algorithm Configuration). Given solver configurations ©, in-
stances I, and a runtime acquisition functionrt : © x T — R, find an instance partition-
ingm:Z — {1,...,k} and a per-set algorithm configuration policy ¢ : {1,...,k} — ©
that minimizes the overall runtime Ry . ==Y . ;1(¢(7(i)),i). The number k determines
the mazimal number of partitions.

Our approach satisfies several desirable criteria (cf. Table 1): Since solving SAT problem
instances is generally expensive, we want to focus on approaches that are computationally
feasible. This means that we want to also minimize the accumulated cost of evaluating
r within the algorithm since SAT solving is known for costly benchmarking [13]. Also,
rather than statically clustering instance space and then finding good configurations for
each cluster, we gradually evolve the partitioning of instances based on how well solvers
can be tuned on these partitions (non-static partitioning). Furthermore, we want our
per-set algorithm configuration policy to be robust so that it can be applied to new
unseen instances and ezplainable so that statements about which configuration options
are beneficial for what kind of instances are possible.

We evaluate our approach on a subsample of the SAT Competition 2022 Anniversary
Track dataset [13]. The employed dataset has been randomly sampled using stratification
regarding the instance families. It consists of 1000 instances. Furthermore, we make use
of the state-of-the-art KISSAT solver [33, 19] and SEQFROST solver [61]. Analysis has
shown that they form a good portfolio (cf. Section 5.5). Also, we restrict ourselves to
binary configuration options since they have shown a relatively high impact on SAT solver
performance.

1.2 Outline

The subsequent section (Section 2) briefly introduces definitions and notations used
throughout this work. Section 3 summarizes existing work in relevant areas including
SAT-solver portfolios, algorithm selection, and algorithm configuration. Thereafter, we
present our novel genetic algorithm in Section 4. Section 5 is about our experimental
design and the conducted experiments. Section 6 shows evaluation results. Finally, we
conclude this thesis by presenting takeaways as well as listing possible future work in
Section 7.
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2 Preliminaries

This section presents various definitions and explanations that aim to improve the reader’s
understanding of this work. In Section 2.1, we present helpful definitions regarding algo-
rithm selection and configuration. Besides that, we briefly discuss the topic of population-
based evolutionary algorithms in Section 2.2.

2.1 Algorithm Selection and Configuration

Although algorithm selection and algorithm configuration are closely related, they have
separate goals. Figure 1 gives an overview of the relationships. An arrow indicates
that a framework generalizes to another one. The per-instance algorithm configuration
framework is the most general one. Throughout the section, we will define each of the
depicted terms. Apart from the definitions, an actual implementation of those frameworks
should also fulfill the requirements listed in Section 1.

Algorithm Per-Instance
. —_— Algorithm
Selection .
Selection \
Per-Instance
Algorithm
Configuration
Algorithm /
Configuration

Figure 1: Relationship between algorithm selection and algorithm configuration. An
arrow indicates that a framework generalizes to another one. The depiction is
inspired by Kerschke et al. [49].

2.1.1 Algorithm Selection

Algorithm selection (AS) has the goal of selecting a single algorithm out of a fixed set to
solve instances from a given distribution. The algorithm selection problem is specified in
Definition 2.1.

Definition 2.1 (Algorithm Selection). Given a set of solvers S, problem instances I, and
a runtime acquisition function r: S X T — R™, find a single problem solver s € S that
minimizes the overall runtime R := Y iz I(s,14).

2.1.2 Per-Instance Algorithm Selection

Per-instance algorithm selection (PIAS) is an extension of algorithm selection. Its goal
is to choose an algorithm out of a fixed set of algorithms for each problem instance
individually. The per-instance algorithm selection problem is specified in Definition 2.2.
Algorithm selection can be considered a specialization of per-instance algorithm selection
with constant .
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Definition 2.2 (Per-Instance Algorithm Selection). Given a set of solvers S, problem
instances I, and a runtime acquisition function r: S x T — R*, find a per-instance
selection policy v : T — S that minimizes the overall runtime R;PIAS) =D ier T(W(i) ,4).

2.1.3 Algorithm Configuration

The goal of algorithm configuration (AC) is somewhat different from algorithm selection:
Given a single problem solver, the goal is to find its best-performing configuration. The
algorithm configuration problem is specified in Definition 2.3. Although there is no rela-
tion between algorithm selection and configuration (regarding generalization) in Figure 1,
one could transform an algorithm selection into a configuration problem and vice versa.
To do so, the set of problem solvers among which to choose can be combined into a single
meta-solver using configuration options © to pick the underlying algorithm.

Definition 2.3 (Algorithm Configuration). Given a set of configurations ©, problem
instances I, and a runtime acquisition function r: © x T — RT, find a configuration

0 € © that minimizes the overall runtime RéAC) = ez r(0,1).

2.1.4 Per-Instance Algorithm Configuration

Per-instance algorithm configuration (PIAC) is the most general framework out of the
shown ones (cf. Figure 1). Given a problem solver, its goal is to find the best-performing
configuration for each problem instance individually. The per-instance algorithm config-
uration problem is specified in Definition 2.4.

Definition 2.4 (Per-Instance Algorithm Configuration). Given a set of configurations
O, problem instances I, and a runtime acquisition function r: © x T — RT, find an

algorithm configuration policy ¢ : T — © that minimizes the overall runtime R;PIAC) =

D ier 1(9(0) 1)

2.1.5 Per-Set Algorithm Configuration

Because choosing configurations for each instance is prone to over-fitting and not robust
(cf. requirements in Section 1 and 3), we also consider a simplification of the per-instance
algorithm configuration framework: Per-set algorithm configuration. This is the exact
problem that we want to tackle in this work. It has already been introduced in Defini-
tion 1.1 and is further discussed in Section 4. Having a dedicated instance partitioning
7 allows for more robust results since only one configuration is chosen for each partition.
One may also regard per-set algorithm configuration as a version of per-instance algo-
rithm configuration with a constraint on the maximal number of different configurations.
Because of this, there is no separate box for it in Figure 1.

2.2 Population-based Evolutionary Algorithms

To handle the reciprocal dependency between partitioning the instance space and finding
good configurations for them, we make use of a population-based evolutionary algorithm.
Refer to Section 4 for details. This section briefly introduces such algorithms to ease
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the understanding of this work’s main part. Many algorithmic ideas use evolutionary
principles, e.g., evolution strategies, differential evolution, simplex search, etc. Compare
for example the surveys by Bartz-Beielstein et al. [14] or by Béck and Schwefel [12].

Population-based evolutionary algorithms evolve a population of individuals P® over time
t € {1,...,T} using the Darwinian concept of fitness. Such algorithms follow a simple
five-step procedure:

1.

Generate the initial population 7). This is usually done randomly. Initializing the
population to a heuristic solution is also common though.

2. Evaluate the fitness f: P — Rt of each individual.

10

Select individuals for recombination based on their fitness and discard the least-
fit individuals. This is usually done using either fitness-proportionate selection or
tournament selection. Fitness-proportionate selection samples the population with
the individual’s fitness as weights. In contrast, tournament selection repeatedly runs
tournaments between a handful of random individuals selecting the winner with a
certain probability. Thereby, the tournament size determines the selection pressure.
In practice, tournament selection is often preferred because it is easy to parallelize
and has less stochastic noise [21].

Create offspring by mutation and cross-over. The goal of this step is to, either,
randomly find fitter individuals by mutating some properties of selected individ-
uals or combining good attributes of individuals through cross-over. By doing a
cross-over step, we hope that the combination of good properties of two or more
individuals yields better offspring. While mutation may be regarded as the explo-
ration of solution space, cross-over can be described by exploiting properties of good
individuals.

. Repeat from step 2 until a certain stopping criterion is reached. This can be either a

fixed number of iterations or a criterion based on the improvement of the individual’s
fitness over time. Increment ¢ by one.
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3 Related Work

Related work is divided into four sections. First, we take a brief look at portfolio creation.
Second, we discuss relevant work regarding algorithm selection. Thereafter, we look at
algorithm configuration, including the configuration of SAT solvers. Finally, we give an
overview of per-instance algorithm configuration. It can be considered as a generalization
of, both, algorithm selection and configuration.

3.1 Portfolio Creation

By the term portfolio, we generally mean a small set of complementary algorithms [49].
Bach et al. [11] present an optimization approach for finding optimal portfolios of SAT
solvers with different sizes. Amadini et al. [6] also analyze portfolios of different sizes for
constraint-satisfaction problem solvers. Both studies show the diminishing advantages of
gradually bigger portfolio sizes. Bach et al. [11] have also shown that for bigger portfolios
selection models become less accurate.

Within the SAT domain, there are mainly two strategies to profit from portfolios, i.e.,
schedules [36, 23] and per-instance selection [69, 48]. Schedules interleave runs of different
problem solvers [36, 23| as some solvers might make more progress in a particular solving
phase than others. In contrast to that, per-instance selection chooses a single algorithm
to use for each problem instance. Within this work, we also limit ourselves to the latter.
Algorithm selection makes use of, both, supervised [69] as well as unsupervised machine-
learning methods [48]. We take a look at them in the subsequent section.

3.2 Algorithm Selection

Algorithm selection (AS) has the goal of selecting one algorithm out of a set of algorithms
to solve a problem. It is closely related to algorithm configuration. Algorithm config-
uration can be thought of as a more general and flexible concept though. Both involve
minimizing the cost of acquiring the best algorithm. Algorithm selection has been studied
as early as 1976 by Rice [64]. In a more recent survey, Raschka [63] discusses the topic
of algorithm selection in the field of machine learning. Thereby, he especially focuses on
statistical tests for comparing model performance as well as on model evaluation.

An important extension of algorithm selection is per-instance algorithm selection (PTAS).
Here, one algorithm is selected for each problem instance. Often, different algorithms
perform best on different regions of the instance space. A survey by Kerschke et al. [49]
provides an overview of per-instance algorithm selection approaches. This includes re-
search within propositional satisfiability solving. A survey by Hoos et al. [41] provides an
overview of PIAS dedicated to SAT.

One of the first successful per-instance algorithm selectors within SAT is the portfolio-
based approach SATzilla [69]. Xu et al. [69] use a selection model to find the approximately
best solver out of a portfolio of solvers for each instance. They make use of problem
instance features like general instance size and graph features among others. In a more
recent version [71], they use an empirical instance hardness model that estimates how
difficult a particular instance is and a cost-sensitive feature model that estimates how
expensive the acquisition of a particular feature is.

11
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Kadioglu et al. [48] propose a clustering-based method called ISAC (instance-specific
algorithm configuration). Although the approach proposes a strategy for per-instance
algorithm configuration, it can also be used as an algorithm selector by modeling different
portfolio members as configuration options. Their approach clusters instances and assigns
each cluster of sufficient size a solver that showed to be best for those instances in a training
phase. Given a new instance, they select a solver based on the k-nearest neighbors in
feature space. This assumes that instances with similar features are solved well by similar
solvers.

Collautti et al. [25] propose a portfolio approach called SNNAP (solver-based nearest
neighbor for algorithm portfolios) that is a continuation of the ISAC idea. It entails both
supervised as well as unsupervised methods. To be more specific, they use random forests
to predict individual solver runtimes on instances and cluster instances based on the
similarity of these runtimes. Given a new instance, they predict solver runtimes and pick
a solver based on the best solver among the k-nearest neighbor clusters. SNNAP shows
stronger and more robust results than ISAC on the SAT Competition benchmarks [25].

The tool AutoFolio [53] seeks to automate the process of per-instance algorithm selection
even further. It combines the aforementioned techniques, i.e., SATzilla [69], ISAC [48], and
SNNAP [25], among others using automated algorithm configuration to find the optimal
hyperparameter setting.

Per-instance algorithm selectors are also an important part of cooperative competitions.
Established competitions like the annual SAT Competition [13] rank solvers based on their
performance on all benchmark instances. In contrast to that, cooperative competitions
like the Sparkle Competition [54] rank solvers based on their marginal contribution [68].
Roughly speaking, this score makes use of the number of instances that are solemnly
solved by a particular solver. The Sparkle Competition 2018 [54] shows that even solvers
that performed suboptimally within the SAT Competition 2018 [39] have high marginal
contributions to the resulting Sparkle portfolio, indicating the complementarity of solvers
and the advantage of portfolio-based SAT solving.

3.3 Algorithm Configuration

Algorithm configuration (AC) has the goal of choosing the best or a close-to-best configu-
ration of a single algorithm regarding a given benchmark. Although algorithm configura-
tion and selection are somewhat related, the task of configuration is generally harder as it
involves modeling continuous, integer, and categorical configuration parameters as well as
a generally bigger configuration space. Also, configuration parameters may either repre-
sent high-level data-structure decisions, low-level tweaking, or something in between. In
comparison, algorithm selection only has to choose among a handful of portfolio members.

The programming-by-optimization paradigm [40| argues for encoding a multitude of de-
sign choices within an algorithm’s configuration options, leaving the optimization to an
automatic tuner. Eggensperger et al. [27] give an overview of best practices regarding
algorithm configuration. They also name common pitfalls of humans tuning algorithms
manually.

ParamlILS is one of the first general-purpose algorithm configurators [44, 43]. It employs
iterative local search starting from the default configuration to find minima. When reach-
ing local minima, it alters parameters randomly to escape. ParamILS also makes use of
adaptive capping: Assuming that the algorithm with the best configuration needs runtime

12
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t, all further experiments are not run for longer than ¢. Knuth [50] shows that ParamILS
provides significant performance improvements over manual optimization in SAT solving.

The gender-based genetic algorithm (GGA) [8] is also a general-purpose algorithm con-
figuration system. It uses a genetic approach to evolve configurations, employing the
concept of gender to maintain diversity within the population. Pairs of configurations
with appropriate genders produce offspring. GGA also applies adaptive capping to its
evaluation phase. GGA++ [7] is an extension of GGA utilizing random forests for perfor-
mance prediction. This advancement is inspired by the sequential model-based algorithm
configurator (SMAC) [42, 52].

SMAC [42, 52| makes use of an empirical performance model to determine configurations
of interest. Given parameter values, Hutter et al. want to predict their performance
impact and run experiments with maximum expected improvement. To do so, they fit a
regression model to runtime data acquired so far. Hutter et al. [42] also show that SMAC
performs significantly better than ParamlILS in 65 % and significantly better than GGA
in 76 % of cases.

Advances in the field of automated machine learning (AutoML) also show the benefit of
combining, both, algorithm selection and configuration within the framework of the CASH
problem [67], which has been introduced in Section 1.

Thornton et al. [67, 51| propose the tool Auto-WEKA. Similar to SMAC [42], they make
use of model-based bayesian optimization to predict the performance of an algorithm-
configuration pair. They show that their implementation significantly outperforms a
time-limited random grid search as well as a greedy baseline, i.e., running all algorithms
with a standard hyperparameter setting and then individually tuning the most promising
candidates. Feurer et al. [30] propose the tool Auto-sklearn. It extends Auto-WEKA [67]
to be usable with the popular models from the sklearn library [62].

While ParamILS [44] and SMAC [42] use multivariate Gaussian processes to estimate the
shape of hyperparameter space, the Optuna framework [5] uses tree-structured Parzen
estimation. Bergstra et al. [17] show that this is a less expensive method compared to
Bayesian optimization with Gaussian processes. In comparison to Gaussian kernels, a
Parzen-Tree estimator maintains two separate kernel-density estimates indicating which
regions have good hyperparameter performance and which have bad hyperparameter per-
formance. By finding the point that maximizes the expected improvement in both kernel-
density estimates, we are more robust in identifying regions in hyperparameter space
with good performance. The Optuna framework [5] is a state-of-the-art hyperparameter-
optimization tool that employs this kind of model. In Section 6.4, we use Optuna to
estimate the cost of acquiring a good SAT solver configuration for given a dataset. Re-
garding our desired features (cf. Table 1), Optuna is feasible for the configuration of SAT
solvers and reliably produces robust results. However, it does not leverage the diversity
of problem instances through partitioning instance space, since we use it to find a single
configuration with good performance regarding all instances in our dataset.

Algorithm configuration also plays a key role within the Configurable SAT Solver Chal-
lenges [45]. Established competitions like the annual SAT Competition [13]| rank solvers
based on their performance on all benchmark instances. Thereby, solvers are optimized
on the distribution of benchmark instances within this competition. In contrast to that,
the Configurable SAT Solver Challenge (CSSC) evaluates SAT solver performance after
a time-limited configuration phase. This incentivizes the usage of effective configuration
parameters. The CSSC makes use of the most common algorithm configuration methods

13
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Table 1: Comparison of desired features of (per-set) algorithm configuration approaches
including a simple grid search, the clustering-based ISAC [48] approach, the
CMA evolutionary strategy [16], the Optuna framework [5], as well as our evo-
lutionary trees approach.

Foature Grid ISAC CMA-ES Optuna Our
Search [48] [16] [5] approach
Feasible in Context X v X v v
Non-static Partitioning X X v X v
Robust v v X v v
Explainable X v X X v

including the aforementioned configurators, i.e., ParamILS [44], GGA [8], SMAC [42],
and Optuna [5].

3.4 Per-Set / Per-Instance Algorithm Configuration

Per-instance (PIAC) and per-set algorithm configuration (PSAC) have the goal of finding
the best configuration for each instance or each set of instances respectively (cf. Defini-
tion 1.1). The former is also often referred to as instance-specific algorithm configuration
(ISAC). Per-instance algorithm configuration is the most general problem definition out
of the presented problems. Per-instance algorithm selection can be modeled within the
per-instance algorithm configuration framework by encoding different algorithm selection
decisions within the configuration options of a single meta solver. However, per-instance
algorithm configuration is also one of the most difficult among the presented problems as
it involves searching a probably big configuration space for many instances. Also, model-
ing each instance individually is often prone to over-fitting. To make it more robust, we
tackle the problem of per-set algorithm configuration as it tunes the algorithm on sets of
instances rather than single instances. This improves performance on unseen instances.

Table 1 gives an overview of the desired features introduced in Section 1. We compare
their fulfillment regarding a simple grid search, the ISAC approach [48|, the CMA-ES
strategy [16], as well as our approach. A full grid search provides the best configuration
for each instance. Unfortunately, it is infeasible for hard combinatorial problems like SAT.

One way to tackle per-set algorithm configuration is through clustering. Kadioglu et al. [48]
use clustering within their ISAC framework. We discussed it earlier in the context of algo-
rithm selection. Their approach clusters instances in feature space and tunes each cluster
of sufficient size individually. To do so, they use the general algorithm configurators in-
troduced in Section 3.3. This assumes, though, that instances, that are close in feature
space, have similar best configurations. It is unclear whether this is in general true. Apart
from that, the approach has the benefit of being runtime-efficient and robust since an
unseen instance can simply be assigned to a configuration using a k-nearest neighbors
approach.

Based on this, Abell et al. [1] propose features for black-box problems to solve them using
the clustering-based ISAC method. This includes problem definition features, e.g., the
dimensionality of configuration space, as well as hill climbing features, which estimate the
convexity of configuration space, among others.

14
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Murtioz et al. [58] propose a black-box algorithm configurator with an empirical perfor-
mance model (cf. SMAC [42]) using the aforementioned meta-features.

Advances in the field of continuous black-box optimization regarding per-instance algo-
rithm configuration also suggest the usage of evolutionary strategies. This strategy is
only adaptable to continuous configuration options, though. Belkhir et al. [16, 15] make
use of a covariance-matrix-adaptation evolution strategy (CMA-ES) first introduced by
Hansen et al. [38]. It evolves a multi-variate Gaussian distribution by tweaking its co-
variance matrix. In other words, it evolves a model with the aforementioned black-box
configuration-space features for each instance by altering a multi-variate distribution. Ad-
ditionally, they also use a surrogate model of the mapping between configuration space and
meta-features to reduce the number of function evaluations required. However, black-box
algorithm configurators still require a vast number of function evaluations. CMA-ES [16]
requires in the order of 1000 function evaluations per configuration-space dimension, ren-
dering it infeasible for hard combinatorial problems. Also, CMA-ES [16] lacks robustness
and explainability as introduced in Section 1 since each instance is modeled independently.
An advantage of this strategy is, though, that instances are not statically grouped into a
cluster as with the ISAC approach [48], which theoretically prevents each instance from
reaching its optimal configuration.

15
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4 Automated Tuning and Portfolio Selection

This section describes our main contribution: an evolutionary algorithm for automatically
tuning and performing portfolio selection for SAT solvers as given in Definition 1.1.

Algorithm 1 outlines our evolutionary tuning and selection approach. It takes all available
configuration options ©, all instances Z with features, the runtime acquisition function
r as well as the maximum number of iterations as input. To start the algorithm off, we
initialize the population of our evolutionary algorithm in Line 1 (Section 4.1). Then,
we perform several evolution steps until we reach a maximum of evolution iterations
(Line 2). Each iteration consists of tuning the current population for a fixed amount of
time in Line 3 (Section 4.5), computing the fitness value for each individual based on the
acquired or predicted runtimes in Line 4 (Section 4.2), selecting promising individuals in
Line 6 (Section 4.3), and producing offspring in Line 7 (Section 4.4). When the main loop
finishes, we return the fittest individual’s instance partitioning and configuration policy.

Algorithm 1: Evolution of Partitioning Trees Framework

Input: A fixed portfolio of solvers with possible configuration options © (solver
selection included within the configuration), Instances Z with features
feat: Z — R? Runtime acquisition function r: © x Z — R*, Number of
maximum iterations 7', Maximum number of partitions k

Output: Instance partitioning model 7 : RY — {1,..., k} mapping instance

feature vectors to instance partitions, Per-set algorithm configuration
policy ¢ : {1, ..., k} — © assigning each instance partition a
configuration

1 PW « initPopulation(Z, feat, k) // Sec. 4.1

2 fort=11toT do

3 runtimes < tuneAndEvaluatePopulation (P(t), O, r, feat) // Sec. 4.5

4 | fitness «— computeFitness(P®, runtimes) // Sec. 4.2

5 if not last iteration then

6 P+ selectPopulation (P®), fitness) // Sec. 4.3

7 P P U produceOffspring (P, fitness, feat, k) // Sec. 4.4

8 p* < argmax fitness(p)
peP(T)

9 return (p*7, p*1))

4.1 Individuals and Initial Population

Each individual consists of an instance partitioning model # : RY — {1,... k} and a
per-set configuration policy ¢ : {1,...,k} — ©. The former is an extension of 7 in
Definition 1.1. It maps instances represented by a d-dimensional feature vector to one out
of k partitions. The latter is identical to ¢ in Definition 1.1.

To represent the aforementioned instance partitioning model, we use decision trees. Deci-
sion trees provide the advantage of being easily modifiable, easy to interpret, and a good
choice for supervised prediction tasks, although they are nowadays predominantly used
within random forest ensembles [22].
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Feature 3

<5 -~ 5 Partition 1 — { option;: on, ...}

Partition 2 — { option,: off, ...}

Partition 1 Partition 2

Figure 2: Depiction of an individual’s components including the instance partitioning
decision tree model as well as the per-set algorithm configuration policy.

Figure 2 shows an example of an instance partition tree with a per-set algorithm config-
uration policy. Thereby, the instance partitioning decision tree only consists of a single
split. Instances with a value at most 5 regarding the third feature are assigned to the
first instance partition. Instances with a value above 5 regarding the third feature are
assigned to the second instance partition. The per-set algorithm configuration policy on
the right-hand side of the figure then maps each instance partition to a configuration.

The individuals’ instance partitioning models are modified in Line 7 of Algorithm 1.
Mutating the instance partitioning decision tree is discussed in Section 4.4. The per-set
algorithm configuration policy is modified in Line 3. Tuning the algorithm configuration
of each partition is discussed in Section 4.5. The first line of Algorithm 1 initializes both
by creating the genesis population.

We make use of three different strategies for creating the initial population. First, we
can start with a trivial decision tree with no splits. Having only a single instance par-
tition is equivalent to algorithm configuration (cf. Definition 2.3). Incrementally, more
complex decision trees are formed through mutation (cf. Section 4.4). Second, we can
initially cluster the instance feature space into k clusters. Thereafter, we train a decision
tree classifier to predict the cluster label for each instance. We then use the classifier’s
decision tree as an instance partitioning model. Finally, we can also use instance-family
information to build a decision tree classifier as mentioned above. Within all three pos-
sible initialization choices, the per-set algorithm configuration policy assigns the default
configuration to each instance partition. Naturally, a combination of all three strategies
is also possible. The number of individuals within the initial population is subject to
hyperparameter optimization.

4.2 Population Fitness

To evaluate an individual’s fitness, we use either of two types of metrics: population-based
and default-runtime-based metrics. While population-based fitness metrics compare the
individual’s performance to the other individuals in the current iteration, default-runtime-
based fitness metrics do not depend on the fitness of other individuals, i.e., it is possible
to compare individuals’ fitness values from different time steps. Note the time parameter
t in Equation 4.1 indicates a fitness scoring that is dependent on the complete population
at time t. For our purposes, a fitness metric is a function fitness: P — R*. Higher
fitness values indicate a fitter individual. Fitter individuals are more likely to survive (cf.
Section 4.3).

The fitness computation takes as input a function of runtimes per individual and instance,
i.e., runtimes: P® x T — R*. The runtimes have previously been computed or predicted
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in Line 3 of our algorithm. We use the runtimes function as a surrogate model for the
runtime acquisition function r as it is costly to evaluate (cf. Section 4.5). Within our
algorithm, we consider either of three possible fitness metrics including one population-
based and two default-runtime-based ones. The population-based fitness metric is defined
in Definition 4.1. Furthermore, Definition 4.2 and 4.3 present the default-runtime-based
fitness metrics.

Definition 4.1 (Population-based Fitness Metric). Given a current evolution step t and
populous PY, the population-based fitness metric fitness; compares individuals on a per-
istance basis followed by computing the geometric mean, i.e.,

() = (H median { runtimes(q, i) | ¢ € P }> 121 . (4.1)

fitness; - .
7 runtimes(p, )

Definition 4.2 (Default-Runtime-based Fitness Metric). Given a current evolution step
t and populous PO, the default-runtime-based fitness metric fithessy compares the indi-
vidual’s PAR-2 scores to the default solver configuration, i.e.,

2 icz (0o, %)

4.2
> ez runtimes(p, 1) (4.2)

fitnesss (p) =

Definition 4.3 (Default-Runtime-based Fitness Metric (Per-Instance)). Given a current
evolution step t and populous PWY, the default-runtime-based fitness metric fitnesss com-
pares individuals on a per-instance basis to the default solver configuration followed by,
again, computing the geometric mean, i.e.,

1€

r(6o, ﬁ
fitnessz(p) = (H m> . (4.3)

Thereby, we denote the default configuration of the single best solver with 6y. Refer to
Section 5.2 for the definition of the single best solver.

While fitnesss favors individuals that improve an individual’s overall performance, the
metrics fitness; and fitnesss favor stronger improvements on single instances as we aggre-
gate over each problem instance separately. Since we optimize our approach for PAR-2
runtime, it is expected that fitnesss performs best as it is inversely proportional to an
individual’s PAR-2 performance sum.

4.3 Evolutionary Selection

Since there are not enough computational resources to evaluate all individuals that are
produced by mutation or cross-over, an evolutionary selection is performed. Therein, we
select individuals that we want to continue evaluating based on their fitness value and
randomness. As introduced in Section 2.2, there are mainly two types of evolutionary
selection: fitness-proportionate selection and tournament selection. The former is given
in Definition 4.4, whereas we show the latter in Definition 4.5.
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Definition 4.4 (Fitness-Proportionate Selection). Given an evolution step t, a fitness
metric fitness : PO — R*Y, and a sample size k, the probability of picking individual
p € PY is then

fitness(p)

qup(t) fitness(q)

We pick k individuals without replacement. To do so, the normalizing denominator is
adjusted after each draw by omitting already chosen individuals.

P(picking p at time t) = (4.4)

Definition 4.5 (Tournament Selection). Given an evolution step t, a fitness metric
fitness : P® — R*, and a disered population size of k, we randomly partition P®
into k tournament brackets. Then, we select the fittest individual among each bracket.
Partitioning P® can be done using random shuffling.

Tournament selection uses the analogy of tournaments to select individuals. In practice, it
is often favored because it has less stochastic noise [21]. The fittest individual will always
be selected in tournament selection since there is no tournament bracket choice against
which the fittest individual loses. Within the fitness-proportionate selection, however,
the fittest individual might not be selected at all when unlucky. Less fit individuals may
still survive tournament selection if paired with equally fit individuals as with fitness-
proportionate selection. For our purposes, we implement, both, fitness-proportionate
selection as well as tournament selection as defined above.

4.4 Mutation

By mutating individuals, we explore the space of all possible individuals (cf. Algorithm 1,
Line 7). In our case, we mutate the individuals’ instance partitioning decision trees.
Figure 3 shows this. To do so, there are two possibilities: We can either add a new
split under a leaf (Figure 3a) or remove a split having at least one leaf (Figure 3b).
Definition 4.6 shows when we choose to add and when we choose to remove a split.

Definition 4.6 (Add-Remove-Split Decision). Given the current number of partitions A
of the instance partitioning tree of an individual and a desired number of partitions A*,
we use a simple step function to determine the probability of adding a split, i.e.,

1 ifA=1
add_split(A) :=<0 if A=A . (4.5)
AN otherwise

With A’ € (0.5,1.0), we denote the constant growth rate. The remove-split probability is
then remove _split(A) := 1 —add_split(A). A value of, for example, \' = 0.6 means that
it is expected that 6 out of 10 mutations add a split and 4 remove a split. This means that
the tree grows by expected 6 — 4 = 2 partitions every 10 mutations.

We use a constant add-split probability greater than 50 % with a maximum number of
splits. Once this number is reached, the constant add-split strategy returns a zero prob-
ability of adding another split. By doing so, we gradually grow the tree until we reach
its final number of partitions. Slowly growing the tree makes sure that we have promis-
ing individuals for smaller tree sizes before growing. When reaching the desired number
of partitions A*, we continuously restructure the decision tree by removing a split, i.e.,
add_split(A*) = 0. If the tree has no splits, so only one partition, we always add a split,
i.e., add_split(1) = 1.
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Feature 3 Feature 3

<5 > 5

Feature 2

Partition 1  Partition 2 Partition 1 >4

<4

Partition 2  Partition 3
(a) Adding a decision tree splitter under the leaf with the partition identifier 2.

Feature 3 Feature 2

<4 > 4

Feature 2 —

Partition 1 <4 >4 Partition 1  Partition 2

Partition 2  Partition 3
(b) Removing the decision tree splitter that produces partition 1.

Figure 3: Examples for mutating the instance partitioning decision tree of one particular
individual.

4.4.1 Adding a Split

To add a new decision tree splitter, we follow a two-step approach. First, we compute a
score (: {1,...,k} x{1,...,d} — Ry for each combination of leaf and possible splitting
feature of the current decision tree. If a certain splitting attribute o € {1,...,d} at a
leaf A € {1,...,k} produces a trivial split (any of the created partitions is empty), then
(A, @) = 0. A leaf-feature combination with a higher score indicates that adding a split
there is more beneficial. Second, we choose a leaf A\ and a split attribute « as given in
Definition 4.7.

Definition 4.7 (Choosing Add-Split Mutations). Given a scoring function ¢: {1,..., k}x
{1,....d} = Rso, we randomly choose a leaf X\ and an attribute o with a probability of

(A a)

: y (4.6)
> me1 Dp—1 G (M, D)

P( choosing leaf \ and splitting atribute ) =

We may also consider choosing A and a with the highest score deterministically depending
on a hyperparameter of our evolutionary algorithm. Adding the splitter with feature o
under leaf A is done as shown in Figure 3a.

To be more specific, we make use of three possible instantiations of ¢: (1) Uniformly
random, (2) leaf sizes, and (3) split entropy with leaf size scaling. To uniformly sample
possible leaves and split attributes, we make use of Definition 4.8. By randomly adding
splits, we explore the space of possible instance partitioning decision trees.
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Definition 4.8 (Add-Split Mutation — Uniformly Random). Given possible valid choices
of N € {1,... )k} and a € {1,...,d}, we set (;(\,«) := 1. This indicates uniformly
random selection among all possible choices (cf. Definition 4.7).

Using leaf sizes is shown in Definition 4.9. By splitting leaves with more instances with a
higher probability, we make sure that all partitions are sufficiently big. Bigger partitions
are more likely to generalize to unseen instances. Also, Section 6.2 shows that optimal
decision trees for instance partitioning have, in general, relatively big leaves.

Definition 4.9 (Add-Split Mutation — Leaf Sizes). Given valid choices of A € {1,...,k}
and o € {1,...,d}, we define leaf-size scoring as CQ(p)()\, a) := [IPN|. The index p € P
indicates the current individual that we are looking at. Furthermore, T®N denotes all
instances that are part of the instance partition represented by leaf A within the individual
p. Note that o is not used on the right-hand side of the definition, indicating a random
selection of splitting attributes.

Finally, Definition 4.10 shows how to use a variation of the split entropy criterion [28|
for our purposes. It takes the leaf sizes from before into account as well as prefers split
attributes that divide the partition evenly. Section 6.2 shows that the optimal decision
trees for instance partitioning split instances quite evenly within each split decision.

Definition 4.10 (Add-Split Mutation — Split Entropy with Leaf-Size Scaling). Again,
given valid choices of A € {1,...,k} and o € {1,...,d}, we define split entropy with
leaf-size scaling as

L(P)()\7 « |
C{Ep)()\’ o_/) = - |L(p)()‘a a)| 10g2 (W)
IZeN| — PN, )|
_ (’I(p,)\)| _ ’L(p)()\, a)l) logg( |I(p’>‘)| (47)

with (P (X, a) = {ee TP | feat(e), < Bra} -

Thereby, P (X, o) denotes all instances that would end up in the left subpartition if adding
a decision tree splitter under leaf A for the feature a within individual p. The value B 4
denotes the split threshold that we choose for each split attribute o within each leaf A
deterministically. The definition s equivalent to the information entropy regarding the
relative sizes of the newly created partitions multiplied by |Z®|.

To determine the splitting threshold f , for all possible criteria, we use hierarchical clus-
tering of the values of feature «, i.e., feat(e),, constrained to the instances e € AR
We experiment with different linkage types within the hierarchical clustering (cf. Sec-
tion 5.6). Initially, each feature value starts in a cluster of its own. Then, we gradually
merge feature value clusters until only two clusters remain. We set 3, , to the average of
the maximum of the cluster with the smaller values and the minimum of the cluster with
the bigger values.

We choose ), deterministically for mainly three reasons. First, we hope to create more
robust partitionings by grouping instances with similar instance features together. Second,
there is no ground truth as, for example, in decision trees for supervised learning tasks,
i.e., we can only calculate the split entropy regarding the partition sizes. Finally, looking
at all possible split positions is computationally costly as the runtime evaluation (cf.
Section 4.5) would have to be done many times more. This is not feasible as the runtime
evaluation is the bottleneck regarding the strategy’s overall runtime cost.
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4.4.2 Removing a Split

Similarly to adding a split, we follow a two-step approach to remove a split from the
decision tree. For simplicity, we only remove splits with at least one leaf as no tree
restructuring is needed. Removing a split is simpler compared to adding a split as there
is no choice of the feature and threshold to split involved. First, we again compute a
score £: {1,...,k} = Rxq for each possible leaf A € {1,...,k}. A leaf with a higher score
indicates that removing the split above it is more beneficial. Second, we randomly choose
to remove a split above a certain leaf as given in Definition 4.11.

Definition 4.11 (Choosing Remove-Split Mutations). Given a score & : {1,...,k} —
R>¢, we randomly choose a leaf X with a probability of

£

P( choosing leaf \ ) = —————
( choosing leaf \) anzlé(m)

(4.8)

We may also consider choosing the leaf A with the highest score deterministically depend-
ing on a hyperparameter of our evolutionary algorithm. Removing the splitter above leaf
A is done as shown in Figure 3b.

Moreover, we consider three possible instantiations of {: (1) Uniformly random, (2) inverse
leaf sizes, and (3) inverse split entropy. To choose leaves, above which to remove splits,
uniformly random, we make use of Definition 4.12. By randomly removing splits, we
explore the space of possible instance partitioning decision trees.

Definition 4.12 (Remove-Split Mutation — Uniformly Random). Given possible valid
choices of A € {1,...,k}, we set &(N) := 1. This indicates uniformly random selection
among all possible choices (cf. Definition 4.11).

Definition 4.13 introduces the inverse-leaf-size scoring. It favors the removal of decision
tree splits above small leaves as splits with few instances do not generalize well on unseen
instances. Section 6.2 shows that optimal decision trees for instance partitioning have
rather big leaves, in general.

Definition 4.13 (Remove-Split Mutation — Inverse Leaf Sizes). Given possible valid

choices of A € {1,...,k} within an individual p € PY, we define inverse-leaf-size scoring
as
®)(y) . L
& () = o] - (4.9)

Finally, the inverse-split-entropy scoring is introduced in Definition 4.14. The intuition
behind the inverse split entropy is similar to the inverse leaf size scoring function: It
favors the removal of unbalanced decision tree splits. Section 6.2, again, shows that
optimal decision trees for instance partitioning split instances rather evenly, in general.

Definition 4.14 (Remove-Split Mutation — Inverse Split Entropy). Given possible valid
choices of A € {1,...,k} within an individual p € PY, we define inverse-split-entropy

scoring as
1

(p) ) =
53 ( ) ngp)(/\7a>\) ’

using the definition of (3 (see Definition 4.10). Thereby, a denotes the splitting feature
in the decision tree splitter above leaf \.

(4.10)
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4.5 Tuning SAT Solvers on Instance Partitions

To tune SAT solvers on the instance partitions of the individuals, we use several tech-
niques that we have previously published [32]. These include runtime discretization and
prediction techniques.

Algorithm 2: Tuning Configuration Policies within Individuals

Input: The current population P®, configurations ©, runtime acquisition
function r: © x Z, and instance features feat: Z — R?
Output: Runtimes per individual and instance, i.e., runtimes: P® x 7 — R*

1 runtimes(p, e) < L for all p€ P® and e € T

2 for p € P® do
3 for e {l,...,k} do

// Evaluate random configurations

4 ©" < Uniformly randomly sample ¢ configurations from © \ ©q
5 for € © do
6 Acquire at least R runtimes r(f,e) with e € 7P // Uses caching
7 Fit model to predict the cluster labels ,,(#, €) of all e € TPV

// Update the currently best configuration
8 PP(N) «— argmin Y., zom K(ym(0,€) €)

9€0'UBy

// Assign each instance to the currently best runtime
9 for e € I do
10 L runtimes(p, €) < v, (v (7 (e)) , €)

11 return runtimes

Algorithm 2 shows the tuning procedure as used in Algorithm 1, Line 3. Thereby, we tune
each instance partition A € {1,...,k} of each individual p € P® separately by finding
better configurations ¢® () for partition A (cf. Definition 1.1). This is useful in practice
as the evaluation can be parallelized over all individuals and partitions. With Z®N | we
again denote the instances that are in partition A € {1,...,k} within individual p € P®.

We randomly sample ¢ configurations ©’ from 0\ 0, that we want to test within a partition
A of a given individual p (Algorithm 2, Line 4). We sample configurations uniformly
random and independently regarding each partition. With Oy, we denote configurations
with known runtimes for all instances in Z, e.g., the used solver’s default configurations.

Thereafter, we evaluate each candidate configuration within ©’ by acquiring R runtimes
r(6,e) with e € ZPA (Line 6), or less if [Z(PY| < R. We re-use runtime labels that we
have previously acquired or predicted within a cache. To be more specific, we use all
previously acquired or predicted runtimes of the partition’s instances Z(* and uniformly
randomly sample additional runtimes if we have less than R observations in total. If there
are already at least R data points for a given partition, nothing has to be done.

Then, we use a supervised machine-learning model to predict the runtime labels of the can-
didate configurations on the remaining instances within the respective partition (Line 7).
The following paragraphs show how the runtime transformation and prediction work. In
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Line 8, we update the per-set algorithm configuration policy ). We set it to the configu-
ration with the minimal predicted runtime sum. We compute the minimum regarding all
candidate configurations © and configurations 6y, for which we know all runtimes, e.g.,
the portfolio’s default solver configurations. In Lines 9 and 10, we collect all results within
the runtimes function. It is used to determine the fitness of an individual (cf. Section 4.2
and Algorithm 1). To compute the fitness values (cf. Section 4.2), it is obligatory to
predict the runtime labels of all instances since different individuals use different instance
partitionings.

4.5.1 Runtime Transformation

We assume that the runtimes of a subset of configurations ©y C © are known. We then
assign each of those runtimes {r(#’,e) |0’ € Oy, e € Z} one out of m clusters Cly, ..., Cl,,.
Thereby, the fastest runtimes per instance end up in the first cluster C'l; and the slowest
runtimes per instance in cluster Cl,,_;. Timeouts have a separate cluster: Cl,,. This
runtime transformation 7, : ©9 X Z — {1,...,m} can be defined as

(0, €) =7 < (6, e) € Cl; (4.11)

for all configurations 0’ € ©4 and instances e € Z. Moreover, we extend -, to © x Z by
assigning each configuration-instance tuple (0, e) with associated runtime r(6,e) to the

cluster ~,, (é, e) of the closest log-runtime

0 = argmin |logr(#,¢) —logr(0,e)] . (4.12)
ASCH)

4.5.2 Runtime Prediction

In preliminary experiments, we achieved higher accuracies for predicting discrete runtime
labels rather than raw runtimes. Furthermore, research in SAT-solver portfolio selec-
tors supports this claim [25, 59]. Given a new configuration § € © \ ©y and runtimes
{r(0,¢') | ¢’ € I’} for a subset of instances Z' C Z, we want to predict the performance
of 6 for all remaining instances Z \ Z’ without acquiring any further runtimes. To do so,
we fit a supervised machine-learning model, e.g., a standard random-forest model. Its
inputs are instance features feat(e’) and the clusters of known configurations 7,,(¢', €’)
for all " € ©y and ¢ € Z'. Moreover, the target labels of the model are the clusters of
the new configuration 7,,(6, ¢’) for all instances ¢/ € Z’. We then use the fitted model to
make predictions about v,,,(0, e) for e € Z\ Z'. In the end, we have discrete cluster labels
Ym (0, e) for the new configuration # and all instances e € 7.

Since each instance has a different weight regarding the resulting mean PAR-2 performance
of a solver configuration, we transform the discrete runtime labels ~,,(0,e) back using
k:{l,...,m} x T — R*. Easy instances have less impact on the overall performance of
a configuration. The transformation back can be defined as

K(j, €) := | ! Z r(f,e) (4.13)

{0€001m@.e) = 3t 0 2,

for a discrete cluster label 7 € {1,...,m} and instance e € Z. Less formally speaking, we
map a cluster label 7,,(0, €) to the mean runtime of known configurations whose runtimes
are within the respective runtime cluster regarding a single instance e.
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4.5.3 Runtime Capping

To further reduce the cost of acquiring runtimes, we make use of an adaptive runtime
capping strategy as already mentioned in related work [42, 52|. Using PAR-2 runtime
scoring, experiments are conducted with a fixed timeout of 7 = 5000s [31]. Timeouts are
penalized with a runtime of 27. In contrast to that, we adaptively determine the timeout
for a given experiment as stated in Definition 4.15. If a solver exceeds this threshold, we
also use PAR-2 scoring, i.e., 27,(e). If 27,(e) > 7, then we use a penalty runtime of 27 to
be consistent.

Definition 4.15 (Adaptive Timeout). Given an instance e € I and solver configurations
©¢ C O for which all runtimes {x(6,¢) |0 € Oy} are known, we define the adaptive timeout
value 7, : T — RT as follows:

tq if Ti(e) <t,
T.(€) =< T if Th(e)>T with 7.(e) := T, -min{r(h,e) |6 € O} .  (4.14)

T!(e) otherwise

Thereby, t, > 0 denotes the minimum and T > t, the maximum timeout value possible.
With T, > 1, we control how much worse than the best-known runtime the timeout value
can be.
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5 Experimental Design

This section presents all parts of our experimental design and all done experiments. First,
we briefly explain the used data set and problem instance features. Second, we list
baselines to which we want to compare our algorithm. Third, we describe competing
algorithms. Fourth, we present our experimental methodology. Fifth, we shortly describe
the fixed portfolio of SAT solvers that we use as well as the configuration options that we
optimize. Then, we look at the hyperparameter choices within our evolutionary algorithm.
And finally, we show implementation details as well as how we run the SAT solvers.

5.1 Data

We use the SAT Competition 2022 Anniversary Track dataset [13| for all our experi-
ments. Additionally, we also use a database of 56 instance features' from the Global
Benchmark Database (GBD) by Iser et al. [47]. They comprise instance size features and
node distribution statistics for several graph representations of SAT instances, among oth-
ers, and are primarily inspired by the SATzilla 2012 features described in [70]. Further,
the SATzilla 2012 features are originally inspired by Nudelman et al. [60]. All features are
numeric and free of missing values. We drop 10 out of 56 features because of zero variance
on the given instances. Also, we drop the feature computation time, which is one of the
features, as it is hardware-specific. In total, we use 45 features that we normalize using a
log-normal transformation v — (logv — mean(logv)) / std(logv) for feature values v.

Moreover, we make use of instance-family information? for the stratified sampling of the
complete dataset. Instance families comprise instances from the same application domain,
e.g., planning, cryptography, etc., and are a valuable tool for analyzing solver performance.

All experiments use a random subsample of 1000 out of 5355 instances. It is selected
using stratification regarding the instances’ family. All instance families that entail less
than 1% of instances are put into one meta-family for stratification. This smaller dataset
allows for more extensive experimentation.

5.2 Baselines

This section lists all baseline approaches to which we want to compare our algorithm. We
evaluate the performance of each baseline as discussed in Section 5.4.

5.2.1 Single Best Solver (SBS).

The single best solver is simply the solver with the overall best PAR-2 performance out
of the available solvers: KISSAT [33, 19] and SEQFROST [61]. Thereby, SAT-solver con-
figurations are fixed to the default one. Optimally, every approach that follows has to
outperform this baseline. Otherwise, there will not be much use to a portfolio approach
if the single best solver is already better. In our particular case, the KISSAT solver takes
the role of the single best solver (cf. Section 5.5). As the SBS is known beforehand, no
additional tuning is required. We note, however, that finding the default configuration
supposedly also precedes heavy experimentation and cannot be taken for granted.

'https://benchmark-database.de/getdatabase/base_db
’https://benchmark-database.de/getdatabase/meta_db
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5.3 COMPETITORS

5.2.2 Single Best Configuration (SBC).

The single best configuration is the one single SAT-solver configuration with the best
performance on the given benchmark out of the available solvers: KISSAT [33, 19] and
SEQFROST [61]. In our presented per-set algorithm configuration context, this means
that 7 is constant, i.e., each instance is assigned the same instance partition. In our
case, the single best configuration is a non-default configuration of the KISSAT solver.
Our approach ought to outperform this baseline. Note that the SBC solver is not free
whatsoever as it is not known beforehand, i.e., we have to perform tuning to find it. In
Section 6.4, we use a fixed-size random sampling strategy to determine the SBC solver for
comparison purposes. Additionally, we also benchmark an established tuning framework,
i.e., OPTUNA [5].

5.2.3 Virtually Best Solver with Default Configurations (VBS).

The virtually best solver is a common comparison for portfolio selection approaches. It
uses an oracle that selects the best solver for each instance. The two available solvers over
which we calculate the VBS are the KisSAT [33, 19] and SEQFROST solvers [61]. As there
is no such oracle in reality, it is only used for comparison purposes. For this baseline, we
also keep the solvers’ configurations fixed to the default ones. Because we may tune SAT
solvers, we can outperform the virtually best solver of the default configurations.

5.2.4 Virtually Best Configuration (VBC).

Similar to the virtually best solver, we also want to report the performance of an oracle
picking the solver with the best configuration for each instance. This requires a full grid
search on all instances of the dataset. The VBC is an upper bound for all other algorithm
selectors using the same set of possible configurations.

5.3 Competitors

This section describes all competing algorithms. We evaluate their performance as dis-
cussed in Section 5.4.

5.3.1 Upper-bound of ISAC approaches (ISAC).

As listed in Table 1, the only feasible competitors are ISAC-based approaches. To compare
ourselves to any possible ISAC approach, we first cluster instance space with the clustering
approach described in the original ISAC paper [48]. Then, we select the single best
configuration for each of those clusters. An approach that outperforms this upper bound
also outperforms any ISAC approach, that uses the same clustering technique transitively,
no matter which algorithm configuration system is used to tune the SAT solvers.

5.3.2 Upper-bound of Family prediction (Family).

Another competing idea is to simply tune each sufficiently big instance family. Thereby,
too small families are grouped into one meta-family. We select the single best config-
uration for each of those family clusters. Also, preliminary experiments showed that
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5 EXPERIMENTAL DESIGN

a standard random-forest classifier can predict those instance families reasonably well
(> 99 % Matthew’s correlation coefficient performance). An approach that outperforms
this upper bound also outperforms any approach, that uses the same family grouping
transitively, no matter which algorithm configuration system is used to tune the SAT
solvers.

5.3.3 Evolutionary Trees.

Naturally, we also want to obtain the performance metrics for our approach. Optimally,
our approach lives in between the upper bounds of ISAC approaches and family prediction
(on the lower end) and the virtually best configuration (on the upper end).

5.4 Evaluation Framework

We perform a 5-times repeated 5-fold cross-validation with stratification regarding in-
stance families. Each of the repetitions uses a different random seed, i.e., 0, 1, 2, 3, and
4. Within each of the five cross-validation folds, we use 80 %, i.e., 4 of the 5 dataset folds,
to train each of the aforementioned approaches, i.e., to cluster instances within the ISAC
approach and to evolve the instance partitioning within our evolutionary algorithm (v
and 7). Thereafter, we use the remaining 20 %, i.e., 1 of the 5 dataset folds, to evaluate
performance. Therein, ¢ and 7 are fixed. We tune hyperparameters regarding the evalu-
ation datasets. Also, we want to report the differences between determining the baselines
on the complete dataset versus only the training dataset. This is done for each of the five
folds and all aforementioned competitors and baselines. Performance metrics are averaged
over all folds and all repetitions. We report common statistics on the result distribution
of five folds times five repetitions.

We evaluate performance metrics regarding two categories: First, we compare the SAT-
solver PAR-2 scores for all approaches with a timeout of 7 = 5000s [31]. Since each of
the data folds has a slightly different runtime, we scale each observed PAR-2 runtime ry4
with the VBC baseline runtime 7. of that dataset fold, i.e., perf := ry./rq. Since the
VBC PAR-2 runtime is an upper-bound for all approaches, 7,./rq € (0,1]. A value of
0.8, for example, denotes that we have achieved 80 % of the VBC PAR-2 performance. A
perfect score of 1.0 indicates that we have reached the VBC performance.

Also, we show runtime cumulative-distribution plots for each approach using PAR-2 run-
times as well as those scaled runtimes. A runtime cumulative distribution function plot
reports the fraction of instances that is solved with at most a given PAR-2 runtime, i.e.,

z <t
par2_redf, R — 0,1], paf?_l“cdfwr(t) — |{e € T| r(¢|(7IT’(€)) e) <t} ‘

(5.1)

Thereby, par2_rcdf,,  (7) denotes the fraction of instances that is solved with less than
the timeout value of 7, for example. Similarly, we can also show runtime cumulative-
distribution plots regarding the VBC PAR-2 performance of each instance: It reports
the fraction of instances that is solved with at most a given multiple of the VBC PAR-2
runtime, i.e.,

[fe € Z|r(i(n(e)),e) <t-rue(e)} |
IZ| '

vbe_redf, : R — [0,1], vbe_redf,  (t) :=
(5.2)
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Table 2: The optimal portfolios (VBS) consisting of two members regarding the
SAT Competition 2022 Anniversary Track results [13] with default configu-

rations.

Portfolio members Mean PAR-2
Kissat_MAB_ESA kissat-sc2022-bulky 2552.71
Kissat_MAB_ESA kissat-els-v2 2557.22
Kissat_MAB_ESA kissat-sc2022-1light 2557.75

Kissat_MAB-HyWalk kissat-els-v2 2559.40
Kissat_MAB-HyWalk kissat-sc2022-bulky 2559.81
SeqFROST-NoExtend kissat-sc2022-bulky 2563.08

Thereby, ryp.(€) denotes the VBC PAR-2 performance for each problem instance e € 7.

Second, we compare the cost costyning of the tuning phases. Within our evolutionary
algorithm, this includes all iterations and solver experiments. To avoid time-expensive
searches and runtime acquisitions, we use several techniques as described in Section 4.5.
For better comparability, we express the total tuning cost costiyning in multiples of the time
it would take to evaluate the default solver on all instances, i.e., cOStiuning/ > ez COStaps(€).
An example of this is that an approach might need x times the tuning cost in comparison
to evaluating the default solver on all instances costgs. Note that the evaluation time
of a solver is smaller than or equal to the respective PAR-2 score as we do not penalize
runtimes, i.e., costgs(e) < rgs(e) for all instances e.

5.5 SAT Solvers and their Configuration Options

Because of time constraints in the acquisition and analysis of solver runtimes, we limit
ourselves to two available SAT solvers: KISSAT [33, 19] and SEQFROST [61]. We have
picked those two solvers based on an analysis of the SAT Competition 2022 Anniversary
Track results [13|. Table 2 shows the six best portfolios (consisting of two solvers) regard-
ing the virtually best solver baseline using the aforementioned dataset (cf. Section 6.1).
The five best portfolios solemnly consist of different versions of the KISSAT solver. The
first non-KISSAT solver involved is the SEQFROST solver forming the sixth best portfolio
together with a version of the KISSAT solver. For this reason, we have picked those two
for all further experiments and analysis. Note that the mean PAR-2 scores are quite close
for all listed portfolios.

Both solvers are conflict-drive clause-learning solvers (CDCL). CDCL solving is derived
from the Davis-Putnam-Logemann-Loveland algorithm [26], often referred to as DPLL.
Marques-Silva et al. [55] give an overview of recent advances in the field of CDCL SAT solv-
ing. Apart from DPLL techniques, CDCL solvers employ various kinds of improvements
including learning policies [65], branching heuristics [57] and clause deletion policies [35].

For the configuration options that we want to tune, we only pick binary simplification
options. Simplifications are heuristics within a SAT solver that show practical perfor-
mance benefits on some problem instances. However, they may provide no performance
advantage or may even produce worse runtimes on others. Preliminary experiments have
shown that such configuration options have a relatively big impact on the SAT solver
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Figure 4: Relative improvement regarding the PAR-2 scores of configuration options
turned on versus off for the chosen configuration options. Results are based on
the dataset described in Section 5.1. We aggregate the relative improvements
over all instances.

performance while keeping the configuration space rather small and discrete. In com-
parison, real-valued configuration options would need further modeling, e.g., Bayesian
optimization techniques [52].

Figure 4 shows all configuration options that we want to tune within our algorithm.
Within the KISSAT solver (cf. Figure 4a), we tune the simplification options bumpreasons,
chrono, compact, otfs, rephase, and tumble. Within the SEQFROST solver (cf. Fig-
ure 4b), we tune the simplification options bumpreason, chrono, probe, and rephase.
Refer to the documentation of KISSAT? and SEQFROST? respectively for more informa-
tion. All displayed configuration options are turned on by default. To obtain the boxplots
shown in Figure 4, we perform a complete grid search of all parameter choices using our
1000-instances dataset as mentioned in Section 5.1. Then, we produce boxplots of the
relative improvements regarding the PAR-2 runtimes of experiments where a particular
option is turned on versus experiments where this option is turned off. The bumpreasons

3https://github.com/arminbiere/kissat
‘https://github.com/muhos/SeqFROST
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5.6 EVOLUTIONARY TREES HYPERPARAMETERS

configuration option of the KISSAT solver, for example, provides no performance bene-
fit on average. There are, however, several problem instances where configurations with
the bumpreasons option turned on perform 50 % better. On the other hand, there are
also several problem instances where configurations with the bumpreasons option turned
on perform 50 % worse. This behavior of configuration options is desirable as choos-
ing parameter values on a per-instance or per-set basis can provide a huge performance
advantage.

5.6 Evolutionary Trees Hyperparameters

For convenience, this section gives an overview of all hyperparameters of our evolutionary
algorithm using decision trees.

Initial Population. To create the initial population (see Section 4.1), we use three dif-
ferent strategies: (1) We either start from an empty tree, (2) start with a decision tree
predicting the clustering of instance feature space using k-means clustering with & being
the number of desired partitions, or (3) start with a decision tree predicting the instances’
families. In all cases, we only consider a single individual within the initial population.

Population Fitness. To evaluate an individual’s fitness (see Section 4.2), we use three
metrics: (1) We either use a population-based fitness score that compares individuals on a
per-instance basis followed by computing the geometric mean, (2) a default-runtime-based
fitness score comparing an individual’s PAR-2 score to the default solver configuration,
or (3) a default-runtime-based fitness score that compares individuals on a per-instance
basis to the default solver configuration followed by computing the geometric mean.

Evolutionary Selection. To select individuals for mutations (see Section 4.3), we use
two approaches: (1) We either use tournament selection or (2) fitness-proportionate se-
lection.

Add-Remove-Split Decision. To determine whether to add or remove a decision tree
split (see Section 4.4), we make use of a simple step function. Possible values for A* are
2, 3,4, and 5 as preliminary experiments have shown that smaller trees generalize better
to unseen instances. The growth rate A’ is set to 0.6 to accomplish a slow and steady
growth of the partitioning tree.

Add-Split Mutation. To find the position where to add a split (see Section 4.4.1), we
use three criteria: (1) Uniformly random, (2) leaf sizes, and (3) split entropy with leaf
size scaling.

Split Threshold. To find the split threshold for a given leaf (see Section 4.4.1), we use
hierarchical clustering with one of four linkage types: (1) ward linkage, (2) single linkage,
(3) complete linkage, and (4) average linkage.
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Remove-Split Mutation. To find the position where to remove a split (see Section 4.4.2),
we use three criteria: (1) Uniformly random, (2) inverse leaf sizes, and (3) inverse split
entropy.

Partially Deterministic Mutations. If enabled, add-split and remove-split positions are
determined by the maximum score with random tie-breaking (see Section 4.4.1).

Size of Configuration Sample. Within Algorithm 2 in Line 4, we sample ¢ = 5 con-
figurations. Thereby, we always sample four KISSAT configurations and one SEQFROST
configuration as optimal portfolios use both solvers (cf. Table 3).

Minimum Runtime Observations. Within Algorithm 2 in Line 6, we want to acquire
at least R runtimes for a given configuration. We use the values 5, 10, 15, and 20.

Runtime Transformation. To discretize runtimes, we assign each value to one out of
m clusters. We only consider m = 3 as previously published results show that this is
beneficial [32].

Runtime Capping. We instantiate the parameters in Definition 4.15 with ¢, = 10s,
7 =5000s, and T, € {1.0, 1.1, 1.5}.

5.7 Implementation

Our implementation uses PYTHON with scikit-learn |62] for making predictions and gbd-
tools [47] for SAT-instance and feature retrieval. We use fixed random seeds for reliable
reproduction. In Section 6.4, we also benchmark the performance of an established tuning
framework, i.e., OPTUNA [5].

5.8 Experimental Setup

We have run all experiments on a server with a 32-core AMD EPYC 7551 processor and
128 GiB of main memory. All obtained solver runtimes have been measured using the
CPU time of the solver process. We use 5000s as a timeout for all solver runs, following
the annual SAT competitions [31]. Also, we limit the memory consumption to 16 GiB per
solver run. The memory constraint has never been surpassed.
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6 Evaluation

Within this section, we evaluate all our approaches and baselines as presented in Sec-
tion 5. But first, we take a look at optimal portfolios of size k consisting of possible
configurations in Section 6.1. Second, we show optimal decision trees for partitioning
instances in Section 6.2 (cf. Section 4.1). In Section 6.3, we show PAR-2 performances
of all approaches and baselines using a configuration oracle. Given an instance partition,
this oracle provides the best possible configuration. By doing so, it is possible to com-
pare the partitioning strategies on their own. Thereby, we also look at the impact of
possible hyperparameter choices in Section 6.3.1. Finally, Sections 6.4 and 6.5 compare
the strategies’ tuning costs and the overall PAR-2 performances of all approaches and
baselines.

6.1 Optimal Configuration Portfolios

Having obtained full grid-search results for our dataset (see Section 5.1), we are naturally
interested in the optimal portfolios of a fixed size k regarding all possible configurations ©.
A fixed-size portfolio consists of a subset of configurations © C © with |6 = k. The op-

timal portfolio is then ©; = argmin { 7 Y ecr Min {r(c, e)|ce @} |16C0O, |0 = k}

Thereby, Z denotes the set of instances, © the set of possible configurations (see Sec-
tion 5.5), and r: © x Z — R™ the runtime cost as already given in Definition 1.1.

Table 3: The optimal fixed-size portfolios regarding all possible configuration options
(see Section 5.5) using the dataset as described in Section 5.1.

Size PAR-2  Portfolio Members
(SBS) 3159 Kissar (111111)
1 3106 Kissat (111010)
2 2894 Kissar (111010), SEQFROST (1111)
3 2765  KissAr (101111, 110001), SEQFROST (1101)
4 2688 Kissar (010011, 110001, 111010), SEQFROST (1001)
5 2631 Kissar (010111, 101010, 101111, 110001), SEQFROST (1111)
6 9589 Kissar (010111, 101111, 110001, 111010, 111100),
SEQFROsT (1001)
. 9553 Kissar (010111, 101111, 110001, 111010, 111100),
SEQFROST (0010, 1001)
. o5gp  KISSAT (000000, 000010, 000111, 101000, 101101, 101111),
SEQFROST (0010, 1001)
9 9516 KissaT (000000, 000010, 000111, 101000, 101101, 101111,
0110011), SEQFROST (0010, 1001)
10 553 KIssaT (000000, 000001, 000010, 000111, 101000, 101101,
101111, 110011), SEQFROST (0010, 1001)
(VBC) 2330 All 80 configurations

Table 3 shows the optimal fixed-size portfolios on our dataset as described in Section 5.1.
The solver configurations that are part of the optimal fixed-size portfolios are given in
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Figure 5: Mean PAR-2 performances of optimal fixed-size portfolios. Results are based
on the dataset described in Section 5.1.

the brackets with 1 and 0 denoting that the option is turned on and off, respectively.
KISSAT options are bumpreasons, chrono, compact, otfs, rephase, and tumble in that
order. SEQFROST options are bumpreason, chrono, probe, and rephase in that order
(cf. Section 5.5). Figure 5 also depicts the mean PAR-2 performance of optimal portfolios
with different fixed sizes.

Thereby, we notice three interesting observations. First, the performance improvement
of adding one more portfolio member diminishes with bigger portfolio sizes: While the
performance difference between the optimal portfolios of size one and two is 211.125s,
the difference between the optimal portfolios of size nine and ten is just 2.804s. This
is also in line with the findings of Bach et al. [11]. Second, all examined portfolios of a
size of at least two employ configurations of both solvers: KISSAT and SEQFROST. This
is not obvious at all since the single-best solver is KISSAT by some margin: The default
configuration PAR-2 performance of the SEQFROST solver is 3460.267s, whereas the
default configuration PAR-2 performance of the KISSAT solver is 3159.195s. The latter is
also equivalent to the single-best solver (SBS) within Figure 5. Finally, the virtually-best
configuration baseline (VBC) makes use of all 80 configurations rather than using only a
subset of the best configurations. This is consistent with the boxplots in Figure 4. For
each configuration, there is at least one problem instance on which it is the best. The VBC
baseline is also shown in Figure 5. The line representing the optimal fixed-size portfolios
will touch the virtually-best configuration baseline for a value of k£ = 80, but not before.

Supervised Configuration Prediction. Since we have obtained ground truth in the
form of a complete grid search, we are interested in how well a supervised machine-learning
model can predict the best configuration for each problem instance based on instance fea-
tures. To make the prediction task easier, we only look at the best k-portfolios and
predict solver configurations out of those optimal portfolios for all instances. We use 45
features as already introduced in Section 5.1. We then perform a 5-times repeated 5-fold
cross-validation with different seeds, i.e., 0, 1, 2, 3, and 4. As a prediction model, we use
well-studied random forests [22] with a forest size of 100 trees and the GINI impurity cri-
terion [72]. Table 4 reports Matthew’s correlation coefficient scores [24] for predicting the
best portfolio member for each problem instance. MCC scores are better suited for imbal-
anced class labels as is the case here. They range from -1 to 1 with 1 being optimal and 0
being a random guess. To decrease noise, we add a don’t-care class containing instances
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Table 4: Supervised prediction-making of optimal portfolios using the dataset as de-
scribed in Section 5.1. The table shows the mean performances of all cross-
validation test sets.

. PAR-2 compared to VBC PAR-2 compared to VBC
Size MCC i .
(only portfolio members) (all configurations)

1 - 1.000 0.750

2 0.234 0.941 0.757

3 0.232 0.891 0.751

4 0.244 0.873 0.757

5 0.207 0.844 0.748

6 0.248 0.828 0.746

7 0.232 0.822 0.751

8 0.215 0.812 0.745

9 0.207 0.802 0.743

10 0.212 0.802 0.744

with too close portfolio member performances regarding a fixed threshold. Overall, the
direct prediction performances are quite poor (MCC scores around 0.2). This is also in
line with past observations [25, 48|. Table 4 also shows the performances compared to,
both, the virtually-best configuration baseline of only the portfolio members as well as the
VBC of all configurations. Thereby, one can observe that none of the portfolio selectors is
significantly better than simply picking the single-best configuration (first row of Table 4).
The global SBC achieves a score of 0.75 in comparison to the VBC of all configurations.
We show those results nevertheless as it explains that steering away from the supervised
setting is beneficial.

6.2 Optimal Decision Tree Partitioning

Part of this work is concerned with partitioning instance space using decision trees. We,
therefore, look at the optimal instance partitionings using decision trees of fixed depth. In
other words, we find optimal decision tree splits such that the overall mean PAR-2 perfor-
mance is optimal. Each partition uses the single-best configuration. We use the dataset
as described in Section 5.1 consisting of 1000 instances with full runtime information on
80 configurations.

To find optimal trees, we employ an exhaustive search of all possible partitioning trees
of limited depth. Because of the exponentially growing number of leaves and the big
number of split-position-feature combinations, we only have been able to compute opti-
mal partitioning trees up to a maximum depth of two. Building optimal decision trees
for supervised prediction tasks is also an open research question as this problem is NP-
complete [46]. Current state-of-the-art approaches transform optimal-decision-tree prob-
lem instances to either SAT instances [10] or mixed-integer-programming instances [18] or
employ a branch-and-bound search [3|. The provided implementations are, however, only
able to tackle a few hundred instances with up to a small two-digit number of features.
Within preliminary experiments, we found that optimal decision trees on a smaller subset
of the dataset are not optimal on the original dataset.
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Figure 6: Optimal instance partitioning decision trees with a fixed depth. Results are
based on the dataset described in Section 5.1.

Table 5: Quality of optimal partitioning decision trees in comparison to the VBC baseline
using only the selected configurations within the decision tree. Results are based
on the dataset described in Section 5.1.

Max. Tree PAR-2 Perf. PAR-2 VBC using only the selected

Depth Optimal Tree configurations within the tree Fraction
0 3106 3106 1.000
1 3044 2942 0.966
2 2962 2789 0.942
3250
23000 VEBC
2 —— SBS
= 2750 --=- Optimal Tree
Q; —— Greedy Tree
£2500 1 — — Random Tree
= ~=== Optimal 29P™"_portfolio

2250 ————
o 1 2 3 4 5 6 7 8 9 10
Maximum Tree Depth
Figure 7: Mean PAR-2 performances of optimal, greedy, and random trees. We average

random tree results over 1000 runs. Results are based on the dataset described
in Section 5.1.
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Figure 6 shows the optimal partitioning decision trees with a fixed depth of 1 and 2,
respectively. Each inner node is annotated with the splitting attribute®. Refer to Sec-
tion 5.1 for details on the employed features. In both optimal trees, there is at least one
imbalanced split regarding instances in the split’s leaves. To exploit the complementarity
of the KISSAT and SEQFROST solvers, optimal trees try to identify which instances are
solved best by which solver. Among leaves mapping to the same solver (cf. Leaf 2-4;
Figure 6b), instances are distributed quite evenly.

Moreover, Table 5 shows the mean PAR-2 performance of those optimal trees within the
second column for maximum tree depths of 0 (SBC), 1, and 2, respectively. Note that
the difference between the optimal tree of depth 0 and 1 (= 61.2225s) is smaller than the
difference between depths 1 and 2 (= 82.730s). This differs from the diminishing returns
for increasing portfolio sizes in Figure 5. This is not a contradiction, though, as the
number of configurations within a tree is subject to exponential growth with increasing
maximum depth.

The third column of Table 5 shows the VBC baseline performance using only the configu-
rations that have been selected by the optimal trees. It is desired that both numbers are
close together as this suggests that decision trees are well suited for partitioning instances.
The optimal partitioning tree of depth 1 achieves about 97 % of the optimal portfolio per-
formance using the two configurations that have been selected within the optimal tree
(Figure 6a). In contrast to that, the optimal partitioning tree of depth 2 only achieves
about 94 % of the optimal portfolio performance using the four configurations that have
been selected within the optimal tree (Figure 6b). The gap between the optimal tree and
the optimal portfolio is expected to further grow with bigger tree sizes since the prob-
lem of picking a configuration for each instance is getting more complicated with more
configurations to decide amongst.

Being unable to produce optimal trees of bigger sizes, we default to the greedy generation
of trees, level by level. From the optimal trees of depth 1 and 2 (see Figure 7), it is
already clear that this greedy approach is suboptimal. Figure 7 shows the mean PAR-2
performance of optimal and greedy trees in a single plot. Thereby, the single-best default
solver (SBS) is an upper-bound and the virtually best configuration (VBC) is a lower-
bound for all approaches.

Additionally, we plot how random trees perform (see Figure 7). Thereby, we randomly
construct trees of fixed depth and assign the single-best configuration to each leaf. We
repeat this 1000 times for each maximum tree depth and average results. Both, greedy
and optimal trees are better than random ones by a big margin.

Finally, we also plot the performance of optimal 24P*"_portfolios. For a depth of 3, for
example, we identify the 23 = 8 solver configurations that form the best portfolio together
(cf. Table 3 and Figure 5). Thereby, the margin between the greedy tree performance
and the optimal 29¢P*"_portfolio performance is increasing until 24°P*" exceeds the number
of available configurations, i.e., 80 configurations. A possible reason for the increasing
difference between both is the more complex decision boundary of assigning each instance
to the best possible configuration.

Moreover, we also want to analyze how instance families are distributed among the optimal
decision trees’ leaves. This provides useful insights into which families are solved best by
which configuration if only a limited number of configurations are allowed. Figure 8 shows
how instances of the nine biggest instance families are distributed among the optimal tree’s

Shttps://benchmark-database.de/getdatabase/base_db
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Figure 8: Fraction of instances of the nine biggest instance families that occur in each
of the optimal tree’s leaves. Results are based on the dataset described in
Section 5.1.
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Figure 9: Clustering of the nine biggest instance families based on their distributions in
Figure 8b. The more left a joint is, the more similar those families are regarding
Euclidean distance. We merge clusters using the linkage type average.

38



6.3 PAR-2 PERFORMANCE WITH CONFIGURATION ORACLE

partitions. The remaining instances are grouped into a single meta-family. Regarding the
optimal tree of depth 1 (see Figure 8a), only a few instances of the graph-based family
are separated to be solved by SEQFROST. Regarding the optimal tree of depth 2 (see
Figure 8b), the picture is more diverse.

When being allowed to pick only four configurations, it is interestingly optimal to choose
one configuration of the non-dominant solver within the portfolio, i.e., SEQFROST (Par-
tition 0, Figure 8b), one configuration covering sugraph-isomorphism and pigeon-hole
instances (Partition 1), one configuration covering planning and quasigroup-completion
instances (Partition 2), and one configuration covering cryptography, bitvector, and miter
instances (Partition 3). Hardware-verification instances and graph-based instances have
no clear mapping to a single partition.

In addition to that, Figure 9 shows a hierarchical clustering of instance families based
on how similar their distributions are regarding the optimal-tree partitions in Figure 8b.
We incrementally merge the most similar clusters regarding the average linkage crite-
rion using Euclidean distance. To be more specific, given probabilities ps; € [0,1]
that a problem instance of family f is within partition ¢ of the optimal tree with a
maximum depth of two (cf. Figure 6b), the similarity of families f; and fo is then
1 — dist((pfy.0s Pfr1s Pr2s PR 3) s (Pha0s Phats Pha2s Pras)) /V2. We use the Euclidean dis-
tance to determine the distance between two families. By doing so, we observe that the
quasigroup-completion and planning families are the most similar. Problem instances of
those families end up most often within the same partition of the optimal partitioning de-
cision tree of a maximum depth of two, i.e., partition 2 in Figure 8b. Hence, such instances
are solved best by the same configurations. The second most similar cluster is formed
by the miter, bitvector, and cryptography families. Problem instances of those families
are grouped into partition 3 within Figure 8b. Thereafter, the pigeon-hole and subgraph-
isomorphism families are merged into one cluster. Their instances prefer to be solved best
by the same configuration. Finally, problem instances of the hardware-verification and
graph-based family, as well as all remaining instances, have no clear mapping to a single
partition as mentioned before.

6.3 PAR-2 Performance with Configuration Oracle

Before looking at the PAR-2 performances and runtime costs of all approaches in Sec-
tion 6.4 and 6.5, we compare the stand-alone quality of the instance partitioning strategies
by using a configuration oracle. Given the set of instances Z and configurations O, we
use a runtime oracle R : P(Z) — O that returns the single-best configuration for a given
subset of instances. We can answer such queries since we have obtained full grid search
results on our dataset. Using this oracle, we can examine the quality of the discussed
partitioning techniques.

6.3.1 Evolutionary Algorithm Hyperparameters

Using the runtime oracle R, we are interested in the impact that the hyperparameters
listed in Section 5.6 have on the overall performance. Figure 10 shows boxplots of the
performance impact of all hyperparameters. The boxplots show the distributions of all
experiments with the respective hyperparameter value. Again, performance is given rel-
ative to the VBC baseline. Also, we only report the performance on the cross-validation
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test sets. All the differences among the impacts of all hyperparameter choices are signif-
icant regarding a Wilcoxon signed-rank test with o = 0.05 since we deal with a rather
large number of hyperparameter combinations: 25920 combinations. Half of those use
tournament selection, for example, and the other half fitness-proportionate selection. The
performance differences are quite small, however. We print the single-best combination
of hyperparameters in bold letters within Figure 10. We use those hyperparameter values
throughout the remaining part of this work. In Table 6, we also give the top-5 single-
best hyperparameter choices. Again, the differences among the top-5 combinations are
quite small. The differences between the top-5 single-best combinations are not signifi-
cant as the 25 observations, i.e., the 5-times repeated 5-fold cross-validation results, of
each hyperparameter combination are not enough to distinguish such a close performance
difference.

Initial Population. Regarding the choice of the initial population (cf. Section 4.1), the
top-5 single-best configurations (cf. Table 6) make use of either an empty tree or a pre-
initialized tree based on a decision tree predicting family membership of instances. The
boxplots in Figure 10 support this observation, i.e., they show the advantage of empty-
tree or family initialization. By gradually building a tree, the evolutionary algorithm is
better at exploring the space of possible trees since we only mutate at the leaf level. By
using a family-prediction decision tree, the partitioning tree is already pre-initialized with
splitting attributes that help in distinguishing instances.

Fitness. Regarding the employed fitness metric (cf. Section 4.2), there is a tie between
the population-based (cf. Definition 4.1) as well as the default-runtime-based fitness
metric that acts on a per-instance level (cf. Definition 4.3). Both, produce the exact
same performances. For each of the top-5 single-best hyperparameter combinations in
Table 6, there exists a hyperparameter combination with equal performance no matter
which of the two fitness metrics is used. We omit those duplicates to show a wider range
of hyperparameter combinations.

This result is somewhat counter-intuitive: We expected the default-runtime-based strat-
egy, which uses the sum of PAR-2 scores over all instances, to be the best as we optimize
for the mean PAR-2 score of an approach. It is inversely proportional to the PAR-2
performance sum. The other two fitness metrics, however, aggregate performances on a
per-instance level rather than aggregating the performance on all instances. This shows
the benefit of looking at the SAT solver performance of all instances separately.

Selection. Regarding the selection component (cf. Section 4.3), the winner among the
top-5 hyperparameter combinations is tournament selection (cf. Table 6). It has, however,
a similar impact on performance compared to fitness-proportionate selection in Figure 10.
We expected a more clear winner as tournament selection involves less stochastic noise.
Related work [21] shows the advantage of tournament selection.

Number of Partitions. In related work regarding decision trees, it is long known that
smaller trees generalize better to unseen instances [56]. For this reason, we examine rather
small numbers of instance partitions. Regarding, both, the overall hyperparameter impact
in Figure 10 and the single-best hyperparameter combinations in Table 6, there is no clear
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Figure 10: Boxplots showing the impact of all hyperparameters listed in Section 5.6
relative to the VBC baseline. We use a grid search with a runtime oracle (cf.
Section 6.3). The diamonds indicate the distributions’ means. Moreover, the
emphasized choices denote the single-best combination.

Table 6: The top-5 single-best combinations of hyperparameters.

1 2 3 4 )
Initial Pop. Empty T. Fam. Pred. Fam. Pred. Empty T. Empty T.
Fitness Per Inst. Per Inst. Per Inst. Per Inst. Per Inst.
Selection Tournament Tournament Tournament Tournament Tournament
No. Parts 3 3 4 5) 3
Add Split Random Random Random Leaf Size Random
Threshold Ward Ward Complete Ward Ward
Remove Split Random Random Random Random Random
Determinist. No No No No No
Perf. 0.7489 0.7484 0.7481 0.7480 0.7477

41
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winner. For robustness, we choose a rather small number of three partitions. Using three
partitions is the significantly best option in Figure 10. Differences are quite small though.

Adding a Split. Regarding the add-split criterion (cf. Section 4.4), we select splits
uniformly random as it appears among the top-5 single-best configurations. It is signifi-
cantly better than the other two splitting criteria. Differences are quite small though. By
growing the partitioning trees fully randomly, we explore the space of all possibilities.

Splitting Threshold. Regarding the choice of the splitting threshold (cf. Section 4.4),
we use hierarchical clustering with one of four possible linkage types: ward, single, com-
plete, or average linkage. Thereby, the ward linkage type is significantly better than the
other three linkage types. Differences are quite small though.

Removing a Split. Regarding the remove-split criterion (cf. Section 4.4), the winner
is a uniformly random choice of the split to remove. It is significantly better than any
of the other approaches. This is also consistent with the add-split criterion. By adding
and removing splits fully randomly, we explore the space of possible partitioning trees the
most effectively.

Partially Deterministic Mutations. Finally, we also examine whether deterministically
choosing the leaves to split or merge has any benefit (cf. Section 4.4). However, choosing
splits fully randomly performs the best with a significant difference, which is rather small
though.

Summary. To sum up our hyperparameter choices, we evolve partitioning decision trees
starting from an empty tree. To do so, we use a per-instance default-runtime-based
fitness metric in combination with tournament selection. Moreover, we determine the
tree insertion and removal positions for mutations uniformly randomly. Interestingly,
the complete selection strategy of our evolutionary approach is fully random. Only the
selection pressure is responsible for optimizing the performance of individuals. We use
hierarchical clustering with a ward linkage criterion to find the splitting threshold when
adding a new splitter. The runtime tuning hyperparameters are the subject of Section 6.4.
Therein, we discuss the trade-off between runtime cost and quality of the evolutionary
approach.

6.3.2 Baseline Performances

Figure 11 shows performances of all the baselines and approaches within a 5-times repeated
5-fold cross-validation using our dataset (cf. Section 5.1). Thereby, the boxplots show
the distributions of the 25 obtained data points per approach. Since each fold of the
dataset has slightly varying runtimes, we scale each observed data point r; by the VBC
PAR-2 runtime 7. of that dataset fold, i.e., rye/ra € (0,1], as already mentioned in
Section 5.4. We report this relative performance metric for train and test sets separately.
As all approaches make use of the runtime oracle R, we achieve different results when
adding the runtime tuning component in Section 6.4.

The upper half of Figure 11 shows the baselines from Section 5.2. The SBS boxplots show
the performance of the single-best solver, i.e., the KISSAT solver with default options.
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Figure 11: Boxplots of relative PAR-2 performances compared to the VBC baseline.
The boxplots contain 25 data points each, i.e., the 5-times repeated 5-fold
cross-validation results. Results are based on the dataset as described in
Section 5.1. The diamonds indicate the mean performance.

The SBC boxplots show the performance of the single-best configuration, i.e., the KISSAT
solver with options 111010 (cf. Table 3). Finally, the VBS boxplots show the performance
of the virtually-best-solver baseline including the default configurations of the KISSAT
and SEQFROST solvers. Note that the SBC and VBS baselines require a grid search
of all included parameters. All pairs of baseline performances are significantly different
regarding a Wilcoxon signed-rank test with a = 0.05. The margin between the VBS
baseline and the other baselines is bigger than between the SBS and SBC baselines. This
indicates that adding a new solver to the portfolio is more beneficial than configuring a
single solver, at least for the given distribution of instances. The default configurations
of both employed solvers are already quite good since the dataset contains instances that
have been used at previous SAT competitions (in which those solvers have competed
and they have been optimized for). Also, note that the VBC baseline is represented by
the vertical dashed line with x = 1. Selecting configurations on a per-instance basis
for the configurations listed in Section 5.5 can theoretically achieve a speedup of up to
VBC /SBS = 1/0.737 = 1.357 in comparison to the single-best solver on, both, the train
and test sets. The train and test set mean performances are both 0.737 for the single-best
solver.

6.3.3 Competitor Performances

Apart from that, the lower half of Figure 11 shows the competitors’ performances as
discussed in Section 5.3. Surprisingly, all competitors are significantly worse than the
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VBS baseline on, both, the train and test sets, although the VBS uses only the default
configurations of the KiSSAT and SEQFROST solvers and the runtime oracle provides
access to a total of 80 different configurations rather than just 2. Also, none of the
competitors, including our approach, is significantly better than the SBC baseline on the
test set indicating that simply tuning the best solver provides equal or better test-set
performance than any of the discussed strategies. Those observations differ when no
runtime oracle is available, i.e., tuning is required (cf. Section 6.4).

ISAC. Starting with the ISAC approach, we cluster train-set instances regarding in-
stance features and assign each cluster the single-best configuration using our oracle R.
We then report the test-set performance by using the configuration of the closest cluster
for each test-set instance regarding Euclidean distance. While this strategy works quite
well on the train set, it does not generalize well on the test set. On the train set, the
ISAC approach with runtime oracle performs significantly better than the SBS and SBC
baselines. On the independent test set, however, the upper bound of ISAC approaches,
as described in Section 5.2, is on average slightly worse than the SBC baseline on the test
set. The difference is not significant, though.

Family Prediction. Regarding the family prediction approach, we use the runtime oracle
to assign the single-best configuration to instances of each family that comprises at least
5% of the dataset. The remaining families are grouped into one meta-family. On the test
set, we predict an instance’s family and use the previously assigned solver configuration.
As mentioned in Section 5.3, instance family prediction has an almost perfect accuracy
using a standard random-forest model. On the train set, the family prediction approach
with runtime oracle is significantly worse than the ISAC approach. There is, however, no
significant difference between both on the test set. This indicates that clustering instances
by features and predicting an instance’s family yields roughly the same performance on
unseen instances.

Evolutionary Trees. The evolutionary trees approach has been described in Section 4.
We report its performance using the runtime oracle to tune the partitions of the parti-
tioning trees. Thereby, the train-set performance is significantly better than the SBS and
SBC baselines as well as the family prediction approach. There is no significant difference
in comparison to the ISAC train-set performance. Regarding the test set, the evolutionary
trees approach is significantly better than the ISAC and the family prediction approach.
It produces the best test-set performances of all non-baseline approaches. There is, how-
ever, no significant difference compared to the SBC baseline. Section 6.4 reveals how SBC
and our approach behave when no oracle is provided.

Summary. To sum Figure 11 up, the ISAC approach is best regarding the train-set
performance. Regarding the test set, the evolutionary tree approach is significantly better
than any of the competitors. However, none of the approaches outperforms the SBC
baseline on the test set. The difference between the SBC baseline and the evolutionary
tree approach is not significant, though. Furthermore, there is a big gap between the
VBS and VBC test-set performance and all competitors, indicating further room for
improvement.

44



6.4 RUNTIME COST TRADE-OFF

6.4 Runtime Cost Trade-Off

There is a naturally arising trade-off as we optimize for, both, performance as well as
tuning runtime cost. We want to maximize the performance perf := ry./rq € (0,1] of
the best individual resulting from a run of the evolutionary algorithm as discussed in
Section 6.3. At the same time, we want to minimize the evolutionary algorithm’s total
runtime cost including the cost of all experiments.

Within this section, we make use of the concept of Pareto-optimality. Given a collection
of n cost-performance result tuples (cost;, per f;) with i € {1,...,n}, we consider a result
tuple (cost;,perf;) to be Pareto-optimal if and only if there exists no k € {1,...,n}
with perf; < perf, and ¢; > ¢;. Colloquially speaking, there is no result with better
performance for at most the same cost.

Overview. A run of our evolutionary algorithm (cf. Algorithm 1), with a choice for all
hyperparameters, is associated with a total runtime cost as well as the performance of
the resulting best individual (cf. Section 5.4). Figure 12 shows the total runtime cost
on the x-axis and the PAR-2 performance on the y-axis. We only plot Pareto-optimal
hyperparameter choices as discussed earlier. Thereby, runtime costs are measured in
multiples of evaluating the default configuration of the KISSAT solver on the dataset
described in Section 5.1. Note that the runtime costs are shown on a logarithmic scale.
The solid lines on the right of Figure 12 represent the costs of a complete grid search. The
PAR-2 performance on the y-axis is measured relative to the virtually-best configuration
performance similar to Section 6.3. Figure 12 then compares four different strategies.

First, we select the single-best configuration regarding a random instance subsample of
the dataset of varying fixed sizes. Second, we also show an ISAC implementation us-
ing a k-means clustering approach and random sampling for tuning its clusters. Third,
we benchmark the performance of the general-purpose tuning library OPTUNA [5]. We
use this tuning framework to find the single-best configuration. It uses a tree-structured
Parzen estimator to sample configurations [17] and a random sample of instances to distin-
guish them. Tree-structured Parzen estimators have been shown to produce significantly
better results than random sampling in the hyperparameter optimization domain [17].

Finally, we show different hyperparameter choices of our evolutionary trees algorithm
highlighting the best hyperparameter choice of our algorithm with a black border in
Figure 12a. We also highlight the hyperparameter choices of the other competitors with
similar performances and give absolute numbers of them in Table 7. Figure 12a shows the
PAR-2 performances of Pareto-optimal hyperparameter choices on the train set, whereas
Figure 12b shows the same hyperparameter choices, that have been Pareto-optimal on
the train set, on the test set. The highlighted data points in Figure 12a and 12b show
the same hyperparameter choices respectively.

For comparison reasons, we also show the KISSAT solver default-configuration runtime
(SBS) with its associated standard deviation indicated by the grey area. Test-set standard
deviations are generally bigger as the test sets contain 200 instances compared to the 800
instances within the train sets. As a remark, one might note that the single-best solver
also precedes heavy experimentation and has already been optimized for a similar instance
distribution as ours. That said, it is quite difficult to select a single configuration with
significant performance improvement as the default configuration is already the top-7
configuration on our dataset. Throughout our analysis, all tests for significant differences
use a Wilcoxon signed-rank test with a = 0.05 if not noted otherwise.
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Figure 12: The trade-off between runtime cost and PAR-2 performance. The plot shows
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the PAR-2 performance of random sampling, an ISAC implementation, the
Optuna tuning framework, as well as our evolutionary-trees algorithm. The
error bars indicate the standard deviation regarding the 5 times repeated 5-
fold cross-validation. Runtime costs are measured in multiples of evaluating
the default KISSAT configuration on the full train-set. The performance is
given relative to the VBC PAR-2 performance. Results are based on the
dataset described in Section 5.1.
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Table 7: PAR-2 performances and runtime costs of the baselines, random sampling, an
ISAC implementation, the OPTUNA tuning framework, and our evolutionary
algorithm. For all approaches, we show the hyperparameter choice with similar
performance to the best evolutionary algorithm hyperparameter choice (high-
lighted points in Figure 12). We give both, train-set and test-set performances.
The last column shows a combined score: For cost ¢ and test-set runtime perfor-
mance r, we compute (Tupe/7) / (¢/Cgria). Both, rype/r € [0,1] and ¢/cgriq € [0, 1].

Mean Runtime  Mean Train-Set  Mean Test-Set Comb.

Approach Cost (s) PAR-2 Perf. (s) PAR-2 Perf. (s)  Score
VBC - 2330 2330 -

SBC (Grid Search) 152324 3105 3108 0.75
SBS - 3159 3162 -

Random Sampling 76 939 3115 3154 1.46
ISAC 61220 3112 3192 1.82
Optuna 25249 3118 3162 4.45
Evolutionary Trees 28 820 3124 3128 3.94

Table 7 also shows a combined score of each of the aforementioned approaches. Given
a tuning cost ¢ and test-set PAR-2 performance r, we compute the combined score with
(Tobe/T) ] (¢/Cgria). Both, rype/r € [0,1] and ¢/cgrig € [0,1]. Thereby, ryp. is the PAR-2
runtime of the VBC baseline, i.e., 2330, and cg,iq is the average cost of a complete grid
search per each problem instance, i.e., 152324 s.

Approaches. For the random sampling approach, we randomly sample 10, 20, 30, ...,
or all 800 train-set instances and evaluate all configurations on them. Then, we plot
all Pareto-optimal approaches in Figure 12a. Sampling all 800 train-set instances and
evaluating all configurations on them is equivalent to a full grid search. One might also
think of sampling both, configurations and instances, but for now, we show the simpler
case of only varying the fraction of sampled instances.

For the ISAC implementation, we cluster all train-set instances into 2, 3, 4, or 5 clusters
using k-means. Then again, we use random sampling with a fixed sample size to determine
the SBC for each cluster. The Pareto-optimal approaches regarding a grid search of k
and the fixed sample sizes are shown in Figure 12.

For the OPTUNA tuning framework, we sample 10, 20, 30, ..., or all 800 train-set instances
and give the tree-structured Parzen estimator 5, 10, 15, ..., or 80 iterations to refine its
model. Within each iteration, Optuna picks a configuration and evaluates it on the
instance subsample. OPTUNA provides an ask-and-tell interface in order to do so. We
show the Pareto-optimal approaches regarding a grid search of those two parameters.

For our evolutionary algorithm, we show the Pareto-optimal approaches regarding a grid
search of only the runtime hyperparameters, i.e., the number of minimum observations
and the runtime capping factor 7, (cf. Section 5.6). All other hyperparameters are fixed
to the best combination regarding the train-set PAR-2 performance using a runtime oracle
(cf. Section 6.3).
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Random Sampling. The random-sampling performance grows slowly with an increas-
ing amount of tuning runtime regarding, both, the train and test sets (see Figure 12a
and 12b respectively). This is quite intuitive: The more runtimes we sample, the more
accurate is the choice of the single-best configuration. For this reason, random sampling
provides an informative baseline. For higher tuning costs, the performance improvements
are diminishing, however. Also, performances do not grow past a certain plateau on the
test set, which is slightly above the SBS baseline. In both cases, we do not surpass the
single-best solver baseline by much. On the train set, we only achieve a significant differ-
ence compared to the SBS baseline using tuning runtime within the same magnitude of a
full grid search. On the test set, none of the Pareto-optimal random-sampling approaches
achieves a significant difference. In Table 7, we show that random sampling takes be-
tween double to triple the tuning cost to achieve a similar performance compared to our
evolutionary algorithm on, both, the train and test set.

ISAC Implementation. The performance of our ISAC implementation differs greatly
regarding the train and test sets (see Figure 12a and 12b respectively). For this reason,
we analyze them separately. Regarding the train set (see Figure 12a), we achieve a
significantly better performance in comparison to the SBS baseline. We do so, however,
at a relatively high runtime cost. In Table 7, we show that ISAC needs more than double
the tuning cost to achieve similar results in comparison to our evolutionary algorithm
on the train set. With tuning cost close to a complete grid search, ISAC significantly
outperforms any other approach on the train set though.

Regarding the test set (see Figure 12b), there is a different picture though. We are not
able, not for any runtime cost, to achieve a significantly better ISAC result than the
SBS performance. We attribute this to overfitting and the curse of dimensionality [29,
4]: Common clustering approaches, as we have used one, do not perform well in high
dimensions as feature space becomes sparser and instances seem more similar. Our ISAC
implementation is, therefore, not capable of producing a clustering that generalizes well
to the test-set instances. On the training set, ISAC performs quite well since we partition
instance space and tune each partition individually. So, even if the partitioning itself is
not useful, we get a performance improvement: The more instance partitions we have,
the more overfitting we can get. In Table 7, there is no ISAC hyperparameter choice with
similar performance compared to our evolutionary algorithm. The best test-set ISAC
approach still takes almost four times the tuning cost in comparison to our evolutionary
algorithm.

Optuna. OPTUNA is a general-purpose hyperparameter tuning framework. It is ex-
pected that it performs quite well as it contains state-of-the-art tuning algorithms. Indeed,
Figure 12b shows that our evolutionary algorithm and Optuna perform quite similarly
for more than 10 times the evaluation cost of the default solver. For small tuning costs,
however, Optuna performs slightly better (cf. Figure 12b; runtime cost smaller than 10).

Evolutionary Algorithm. Finally, we want to discuss our evolutionary algorithm’s per-
formance regarding the train and test sets. The best evolutionary-algorithm hyperparam-
eter choices, in Figure 12a and 12b respectively, are both significantly better than the
SBS baseline regarding a Wilcoxon signed-rank test with @ = 0.05. We have to admit,
though, that our best hyperparameter choice on the test set is only barely significant with
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a p-value of 0.035. We also want to emphasize that our approach has a runtime cost that
is magnitudes lower on both data splits than the ISAC approach or random sampling for
equivalent performance. Notably, we achieve similar performances and tuning costs as
Optuna, a state-of-the-art tuning framework. Table 7 shows that our evolutionary algo-
rithm and Optuna need roughly the same tuning cost for roughly the same performance
on both data splits.

Summary. To sum up this section, we constate that there are more time-efficient tuning
strategies than, both, random sampling of configurations and a full grid search. This is
consistent with related work in the field of algorithm configuration and hyperparameter
optimization [42, 5|. The state-of-the-art tuning framework Optuna, as well as our evolu-
tionary trees algorithm, achieve both comparable results indicating that further refinement
of our idea might be beneficial. For small tuning budgets, Optuna is the preferable option
though. Moreover, we find that the clustering strategy of the ISAC framework does not
generalize well to unseen instances due to the curse of dimensionality in high-dimensional
feature space. This conclusion is also supported by the combined scores of each approach
in Table 7: Optuna and our evolutionary algorithm achieve the highest scores. In con-
trast, our ISAC implementation is only slightly better than random sampling and a grid
search.

6.5 Runtime Cumulative Disitributions

Overview. To further analyze the performance of all aforementioned approaches, we
show runtime cumulative-distribution plots in Figure 13. To do so, we use the approaches
that are highlighted in Figure 12b and listed in Table 7. As described in Section 5.4,
Figure 13a and 13b show par2 rcdf and vbe redf, respectively. In short, given a PAR-2
runtime or a multiple of the VBC runtime, Figure 13 shows the fraction of solved instances
within at most the particular timeframe. Thereby, we aggregate the runtime cumulative-
distribution plots over all 5-times repeated 5-fold cross-validation folds, i.e., the solid
lines indicate the mean performances and the associated areas indicate plus/minus one
standard deviation for all shown approaches. Also, note the logarithmic x-axis of both
subplots. All results have been gathered on the test sets.

Moreover, Figure 14 shows similar plots. In contrast to Figure 13, we show the differences
compared to the SBS runtime cumulative distributions. This allows for a better compar-
ison and for answering questions about where approaches are better or worse than the
single-best solver.

PAR-2 Runtime Cumulative-Distributions. Starting with Figure 13a and 14a, we
notice that, on average, all listed approaches behave quite similarly. This is somewhat
expected since all 25 data folds entail different instances with different instance hardnesses.
Also, we selected hyperparameter choices with similar performances within Figure 12b.
In Figure 14a, we notice, however, that our evolutionary algorithm performs slightly
better than the SBS baseline for instances of all difficulties. In contrast, the other three
approaches tend to be slightly worse on easy problem instances, but beneficial on harder
ones (runtime greater than 2000 seconds). Differences are not significant, though, as the
standard deviations are quite big in comparison to the differences.
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Figure 13: Runtime cumulative-distribution plots as explained in Section 5.4. We show

20

the mean performances aggregated over all dataset folds and repetitions. The
colored areas indicate the standard deviation for each approach. Results are

based on the dataset described in Section 5.1.
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Figure 14: Runtime cumulative-distribution plots as explained in Section 5.4. We plot
the differences in comparison to the SBS baseline. Moreover, we show the
mean performances aggregated over all dataset folds and repetitions. The
colored areas indicate the standard deviation for each approach. Results are
based on the dataset described in Section 5.1.
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Multiple-of-VBC Runtime Cumulative-Distributions. Furthermore, Figure 13b and
14b show the same data as before, but instead of showing absolute PAR-2 performance,
we express the specific runtimes of problem instances as a multiple of the best-known
runtime on each respective instance: In contrast to the absolute runtimes in seconds, we
use runtime measured in multiples of the VBC runtime. A value of two, for example,
means that we need twice the runtime of the VBC baseline. The advantage of doing so
is that we are less sensitive to varying instance difficulties within different test sets, i.e.,
twice as much runtime is a relative measure. A disadvantage is though that we value
easy instances over-proportionally as it is easier to get a bigger improvement regarding
multiples of the VBC runtime.

In Figure 13b and 14b, we notice significant differences between our evolutionary algorithm
and all competitors for the range of 1.5 to 3 times the VBC runtime. Our approach solves
the highest fraction of problem instances within the aforementioned timeframe.

That our evolutionary algorithm is consistently slightly better than the SBS baseline on all
four subplots, whereas there is more fluctuation regarding the competitors, is no surprise.
The selected hyperparameters of our evolutionary algorithm involve a fitness metric that
aggregates performance on a per-instance level. Therefore, our approach favors improving
the runtime of the highest fraction of instances, even if it is only a slight improvement.
By contrast, the other approaches optimize for the resulting PAR-2 runtime leading to
the improvement of only a few hard instances (cf. Figure 14a). Hyperparameter analysis
shows that the former is beneficial for our purposes (cf. Section 6.3.1).

Summary. To sum up this section, we looked at the runtime cumulative distributions of
random sampling, an ISAC implementation, the Optuna framework, and our evolutionary
trees algorithm. Overall, the performances of the approaches are quite similar since we
picked hyperparameter choices with similar performances for comparison purposes and
average results over 25 datasets. There is only one major difference in Figure 13a and
14a. Our approach optimizes for the runtime improvement of the highest fraction of
problem instances, whereas random sampling, the ISAC implementation, and Optuna
favor improving fewer harder problem instances (cf. Figure 14a and 14b). In the end,
improving the runtime of many easier or fewer harder problem instances, both, gets the
job done.
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7 Conclusion

The archetypal NP-complete propositional satisfiability problem (SAT) is a versatile tool
in modeling various applications ranging from cryptography [66] to planning and schedul-
ing [34]. In this work, we have looked at automatically tuning and selecting propositional
satisfiability solvers.

Tuning algorithms by changing their parameters is known as algorithm configuration [42,
5|, whereas selecting the best algorithm from a set of known ones is called algorithm
selection [41]. Since SAT problem instances are derived from a multitude of domains, the
best algorithms differ greatly depending on which instances are in the dataset. Therefore,
we consider the notion of per-set algorithm configuration, which specifies an algorithm
configuration for each region of problem instances regarding some feature space. Thereby,
per-set algorithm configuration is a superset of, both, algorithm selection and configura-
tion (cf. Section 3).

We proposed an evolutionary algorithm that evolves instance partitioning decision trees
for per-set SAT solver configuration. We discussed that our approach fulfills several
desirable criteria including interpretability and robustness. It is interpretable in the sense
that the partitioning decision tree provides insights about what instance features lead to a
configuration decision. Moreover, we presented a clustering of instance families based on
optimal partitioning decision trees and showed which instance families are most similar.
Partitioning instances with the aid of decision trees is also robust as we tune an SAT
solver for a region of instances rather than for single problem instances. By doing so, we
generalize better to new instances. We showed that the train-set and test-set performances
of our approach are quite close together.

Furthermore, we discussed that our per-set algorithm configurator, i.e., the evolutionary
trees approach, has similar PAR-2 performances and tuning costs in comparison to the
state-of-the-art algorithm configurator Optuna [5] with which we wanted to find the single-
best configuration. We introduced a scoring combining, both, performance and tuning
costs showing that Optuna and our approach are superior to random sampling and a grid
search. While Optuna has the best score, the difference compared to our approach is not
big. In contrast, our ISAC implementation was only slightly better than random sampling
and a grid search.

Also, we showed that the ISAC approach lacks generalizability because of the curse of
dimensionality [4]. The cluster-then-tune ISAC framework achieves good train-set results.
However, because the feature space is high dimensional, the learned clusters do not per-
form well on the test set. Our experiments showed that partitioning instance space with
the aid of decision trees is more robust.

We introduced a novel per-set algorithm configuration approach evolving instance par-
titions using decision trees. We showed comparable performance in comparison to the
state-of-the-art algorithm configurator Optuna [5]. Finally, we discussed why the ISAC
framework underperforms on the test sets and lacks generalizability.

7.1 Future Work

In the future, we might look into further improving the performance of our evolution-
ary trees approach. This includes the analysis of more advanced evolutionary selection,
mutation, and cross-over strategies as well as a better tuning algorithm. Possible tuning
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algorithms include, for example, tree-structured Parzen estimators [17]. They can model
prior knowledge in the form of a kernel-density estimator. Also, they are the main tuning
algorithm within the Optuna framework [5].

Furthermore, it makes sense to expand our analysis to more datasets to get a better overall
picture. With more datasets, we also mean domains other than satisfiability solving
as tuning frameworks are especially prominent in the machine-learning field. Hansen
et al. [37], for example, propose a platform for comparing black-box optimizers on the
black-box optimization benchmark [9].
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